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Chapter 1

Basic Concepts

1.1 Introduction

1.1.1 Five great concepts

Physical theories are based on five great fundamental concepts:

Ubiquitous discrete objects: Leukippos (fifth century BC) and
his student Democritos (460-370 BC) proposed that objects are
constituted by smallest indivisible particles, see e. g. Tsoucalas
et al. (2013), Oldershaw (1998), Wußing and Brentjes (1987).
They proposed an essential argument: These particles consti-
tute the phase gas, the phase fluid and the phase solid including
the corresponding phase transitions. Dalton (1808) established
the modern concept of the atom. Constituents of atoms are
investigated in the current field of elementary particle physics,
see e. g. Tanabashi et al. (2018). Boltzmann (1877) devel-
oped statistical physics, SP, including the universal constant
kB, while van der Waals (1873) applied that theory in order to
model phase transitions, describing the reorganization of dis-
crete objects.

Heavenly objects move in space according to the law of gravity:

In the geocentric concept, Earth formed the center, and nearby,
there were some heavenly bodies. Aristarchos discovered the he-

1
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liocentric concept, described by Archimedes (287-212 BC), see e.
g. (Archimedes, 1897, Chap. The Sand-Reckoner). In the helio-
centric concept, there was a very huge space. In that space, the
planets move around the sun, and the stars are very far away.
Using that concept, Brahe (1588) and Kepler (1627) developed
the basic observation and analysis (Kepler (1619)) of gravity,
while Newton (1686) developed the law of gravity including the
universal constant G, measured by Cavendish (1798), see also
Carmesin et al. (2021).

Discrete objects form according to the law of quantum physics:

Planck (1900) discovered the quantization of objects in nature,
introduced quantum physics, QP, including the universal con-
stant h, zero-point oscillations, ZPOs, and the correspond-
ing zero-point energy, ZPE (Planck (1911)).

Space and time evolve according to general relativity: Einstein
(1905) applied the invariance of the velocity of light, the univer-
sal constant c, in order to derive the special relativity theory,
SRT. Moreover, Einstein (1915) discovered the curvature of
spacetime, leading to his proposal of general relativity, GR, in-
cluding a theory for gravity and SRT. Using GR, we can explain
the continuous expansion of space since the Big Bang (see con-
tinuous line in Fig. 1.1, Einstein (1917), Wirtz (1922), Hubble
(1929), Carmesin (2021d)).

The essential source of electromagnetism: Coulomb (1785) dis-
covered the law of electric force, it shows that the electric charge
is the essential source of electromagnetism. Oersted (1820) dis-
covered electromagnetism. Faraday (1852) introduced the con-
cept of fields that transfer that force from one location to an-
other, moreover he discovered electromagnetic induction.

Maxwell (1865) unified the results about electromagnetic
fields, and using these, he derived the concept of electromag-
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netic waves. Millikan (1911) measured the essential quantum of
electricity: the elementary charge e. That charge essentially
corresponds to the coupling constant of electrodynamics. In-
deed, Feynman (1985) wrote that the corresponding coupling
constant of electrodynamics ’... has been a mystery ever
since it was discovered ...’. In fact, in this book, we derive the
elementary charge and the coupling constant of electrodynamics
from quantum gravity!

1.1.2 Interesting problems

Scientific progress is often achieved by identifying and solving
problems, see e. g. Popper (1974). Thereby scientific explana-
tions can be achieved and tested Ruben (1990).

Hierarchy problem: In nature there occur objects at very differ-
ent energy scales. For instance, the neutrinos have rest energies
in the meV-scale, the electron, muon, tauon and quarks have
rest energies ranging from 511 keV (electron) or 2.15 MeV (up-
quark) to 173 GeV (top-quark), see Tanabashi et al. (2018),
while the Planck energy is 1.22 · 1019 GeV . These different
energy-scales cannot be explained by the standard model of
elementary particles, SMEP, Peskin (2015). That problem
is called hierarchy problem, see e. g. Shaposhnikov and Shkerin
(2018).

Indeed, the new theory of quantum gravity, QG, repre-
sents a well-founded theory that ranges from the Planck scale
towards the light horizon, see e. g. Carmesin (2021d). More-
over, that theory has been tested in detail by essentially ex-
plaining the standard model of cosmology, SMC, see e.
g. Carmesin (2021c) or (Carmesin, 2021a, Chap. 14). Accord-
ingly, in this book, we apply that theory of QG to the problem
of understanding particles and its electric charge.
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Mass problem: Aad et al. (2012) and Chatrchyan et al. (2012)
discovered the Higgs boson. In the standard model of elemen-
tary particles, that particle can basically explain the masses of
the W bosons, W+, W− and W 0 (also called Z), the quarks, the
electron, the muon and the tauon, see e. g. (Peskin, 2015, 9-10).
Indeed, the mass of the Higgs boson as well as the masses of the
neutrinos have been explained by the new theory of quantum
gravity (Carmesin, 2021a, Chapters 7-9), see also Fig. (1.1).
Accordingly, in this book, we apply that explanation of the
Higgs boson, in order to analyze the internal dynamics of such
a particle.

Fundamental interactions: In the standard model of elementary
particles, SMEP, there are four fundamental interactions: the
electromagnetic interaction (Tanabashi et al., 2018, Sect. 7),
the strong interaction (Tanabashi et al., 2018, Sect. 9), the
weak interaction (Tanabashi et al., 2018, Sect. 10) and gravity
(Tanabashi et al., 2018, Sect. 20). Thereby, the electromag-
netic interaction and the weak interaction can be combined at
sufficiently high energy. However, is the electromagnetic inter-
action really fundamental, or can it be explained by another
fundamental interaction?

Electric charge: In SMEP, the electric charge is a fundamental
property of elementary particles (Tanabashi et al., 2018, p. 33-
127). However, is the electric charge really fundamental, or can
it be explained by another fundamental property?

Elementary charge: In SMEP (Tanabashi et al., 2018, p. 127)
as well as in quantum electrodynamics (Feynman, 1985, p. 127),
the elementary charge is a fundamental quantity that cannot
be derived with help of a fundamental theory from the essential
universal constants: gravitational constant G, velocity of light
c, Boltzmann constant kB and Planck constant h. However, is
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it really impossible to derive the elementary charge e with help
of a fundamental theory from the essential universal constants
G, c, kB and h?

Magnetic monopoles: In the SMEP (Tanabashi et al., 2018,
Sect. 116), as well as in electromagnetism, see e. g. Maxwell
(1865), Landau and Lifschitz (1971), Jackson (1975), the follow-
ing question arises: Are there magnetic monopoles in analogy to
electric monopoles or electric charges? However, are magnetic
monopoles really analogous to electric monopoles?

1.1.3 Unification

In this book we derive the electromagnetic interaction and the
elementary charge. Thereby, all results are in precise accor-
dance with observation and have been derived from quantum
gravity only. In particular, the only numerical inputs are the
universal constants G, c, kB and h. Thus, in this book, we
present a unification of gravity and electromagnetic interaction.

1.1.4 Aims and organization of the book

In this book we aim to explain electromagnetism and the ele-
mentary charge by quantum gravity.

In order to achieve our advanced and innovative aim in a
scientific and clear manner, we present our method first:

In chapter 1, we elaborate basic concepts in cosmology, uni-
versal constants and the standard model of elementary particles.

In chapter 2, we combine GR1 and quantum physics. So
we summarize the new theory of QG. Hereby, we introduce
the quanta of spacetime, QST. These include the dark energy,
the corresponding vacuum (including its time evolution, see Fig
1.1) and the possible excitation states of the vacuum. These

1It is also describing gravity.
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Figure 1.1: Time evolution of the light horizon including dimen-
sional phase transitions (solid line and open ∆). These take
place at critical densities, see Carmesin (2021d). Some quanta
of spacetime of early phases (other lines). Elementary parti-
cles: neutrinos ν (full ∆) Higgs boson (pentagon), quanta of
dark energy at D = 3 (upper ◦), cold dark matter, cdm (�) and
primordial black holes, pbh (lower ◦), see Carmesin (2020b).
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excitation states form the elementary particles2.

Among the elementary particles, the Higgs boson is proto-
typical, as the mass of most elementary particles is caused by
the Higgs boson via the Higgs mechanism. Accordingly, we an-
alyze the Higgs boson in particular: it is formed by three QST.

In chapter 3, we analyze the physics, time evolution and dy-
namics of the three QST within the Higgs boson and within el-
ementary particles caused by the Higgs mechanism: As a result
of that dynamics, such a particle emits particular QST. These
QST can be identified with the quanta of the electric interac-
tion. Moreover, the dynamic structure emitting these QST can
be identified with the elementary charge. In this chapter, we
derive the basic process, and we achieve a difference between
theory and observation of 0.36 %. In chapter 6, we analyze
the simultaneous emission of several such QST, and we ana-
lyze screening and corrections according to QED. Thereby, we
achieve a relative difference between theory and observation of
5.4 · 10−8. So our result is within the errors of measurement.
Thus our finding is in precise accordance with observation.

In chapter 4, we show that the above described QST of the
electric interaction exhibit the correct symmetries of the elec-
tromagnetic interaction.

Based on the above described QST of the electric interaction,
we derive the theory of electromagnetism, and we show how the
QED can be derived. Hereby, we discuss the additional physical
structure achieved by these QST.

In chapter 7, we present a discussion of our results, includ-
ing the following essential insight: Electromagnetism is not a
fundamental interaction, as it is derived from quantum gravity.
The elementary charge is not a fundamental constant of nature,
since it can be derived with help of quantum gravity from the
universal constants G, c, kB and h.

2Historically, Einstein (1917) introduced a cosmological constant Λ, in order to repre-
sent a possible homogeneous energy or density of the vacuum.
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The precise derivation of the elementary charge and of elec-
tromagnetism provides a clear evidence of our theory.

Altogether, we show that quantum gravity explains very dif-
ferent phenomena: For instance, quantum gravity explains the
standard model of cosmology, SMC, including its cosmologi-
cal parameters, see Carmesin (2021a). Quantum gravity shows
its enormous integrative capability by also explaining essential
parts of the SMEP, e. g. QG provides a solution of the hierar-
chy problem and explains the formation of mass, see Carmesin
(2021a), as well as the formation of the elementary charge and
electromagnetism shown here3.

1.2 Standard model of elementary particles

In this section we present a short description of the standard
model of elementary particles (Tanabashi et al. (2018), Bethge
and Schröder (1991), Kobel et al. (2017)), so that the results
obtained below can be related to that model. The model is
essentially constituted by three generations, see e. g. Kobel
et al. (2017). These are basically understood by the beta decay.

1.2.1 β-decay

In the beta decay, a neutron, n, decays into a proton, p, an
electron, e− and an electronic antineutrino, ν̄e:

n→ p+ ν̄e + e− (1.1)

On the level of quarks, the beta decay can be modeled by the
decay of a down quark, d, into an up quark, u, an electron, e−

and an electronic antineutrino, ν̄e:

d→ u+ ν̄e + e− (1.2)
3I derived the present theory progressively. The publication started in 2017 in books,

papers and my book series. See e. g. Carmesin (2017b), Carmesin (2018g), Carmesin
(2018f), Carmesin (2018e), Carmesin (2018a), Carmesin (2019c), Carmesin (2017b),
Carmesin (2019a), Carmesin (2019e), Carmesin (2020b), Carmesin (2020a), Carmesin
(2021d), Carmesin (2021a), Carmesin (2021c), Carmesin (2021b), Carmesin (2021e).
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1.2.2 Isospin - pairs

In the above reaction Eq. (1.2), we transfer the antineutrino
from the products to the educts by changing it to a neutrino:

d+ νe → u+ e− (1.3)

This is interpreted by a transformation of a down quark into
an up quark combined with a transformation of an electronic
neutrino into an electron. Correspondingly, the down quark
and the up quark are interpreted as two states such as two spin
states. Accordingly, a new isospin has been introduced, and
the down quark has isospin Iz = −1/2, while the up quark has
isospin Iz = 1/2. So these two quarks form a pair:(

u

d

)
(1.4)

Similarly, and the electronic neutrino has the isospin Iz = 1/2,
while the electron has the isospin Iz = −1/2, see Eq. (1.7).
Thus, these two leptons constitute another isospin pair:(

νe
e−

)
(1.5)

As these two isospin pairs are combined in the beta decay,
they are combined to the following quadruple:

(
u

d

)
(
νe
e−

)
 (1.6)

1.2.3 Isospin - symmetry

The usual spin states are related to rotations, and these are rep-
resented by the special (with determinant one) orthogonal group
in three dimensions, the SO(3). Similarly, the isospin states are
related to transformations, and these are again represented by
a group, the special unitary group in two dimensions, SU(2).
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1.2.4 Generations

The quadruple in Eq. (1.6) is a first quadruple that had been
developed in several steps: Pauli proposed the existence of the
neutrino as a part of the beta decay in 1930. That neutrino has
been directly observed since 1953. The quark model has been
proposed around 1960.

Later, two similar quadruples have been discovered. Thereby
the top quark was discovered in 1993 and completed these three
quadruples. The numbers of these three quadruples are called
generations, see Eq. (1.8). The particles of the second and third
generation in Eq. (1.8) are the charm quark, c, strange quark,
s, top quark, t, bottom quark, b, muon, µ, tauon, τ as well as
corresponding neutrinos νµ and ντ .

gen.1(
u

d

)
(
νe
e−

)
→


Iz(
1
2

−1
2

)
(

1
2

−1
2

)
→


q(
2
3

−1
3

)
(

0
−1

)
 (1.7)


gen.1(
u

d

)
(
νe
e−

)
→


gen.2(
c

s

)
(
νµ
µ

)
→


gen.3(
t

b

)
(
ντ
τ

)
 (1.8)

In addition to these particles, the standard model contains
bosons that transmit interactions:

The weak interaction is transmitted by W bosons, W+, W−

and W 0 (also called Z-boson, Z represents zero). The electro-
magnetic interaction is transmitted by virtual photons. The
strong interaction is transmitted by gluons. Beyond the stan-
dard model is the hypothetical graviton, see Blokhintsev and
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Galperin (1934), Carmesin (2021d). The masses of most parti-
cles of the standard model are based on the Higgs boson, see e.
g. (Peskin, 2015, p. 9-10) or Tanabashi et al. (2018).

1.2.5 Two additional symmetries

We remind that the isospin states form pairs and are related
to transformations that represent a group, the special unitary
group in two dimensions, the SU(2). Similarly, the quarks u,
d and s form a triplet and are related to transformations that
represent a group, the special unitary group in three dimensions,
the SU(3). That group can explain several elementary particles
that are formed from the quarks u, d and s.

An additional symmetry is related to the electromagnetic
interaction. An effect of that interaction can be modeled by a
change of a phase of a complex number. As numbers represent
one dimension, the corresponding group is the special unitary
group in one dimension, the SU(1). Altogether, symmetries
inherent to elementary particle physics are described by using
the groups SU(1), SU(2) and SU(3) including their combina-
tions. Possible relations to higher dimensional groups are being
investigated since many decades.

1.2.6 Mixing

The system of elementary particles (Eq. 1.8) has been devel-
oped according to reactions such as the beta decay and accord-
ing to symmetries of SU(1), SU(2) and SU(3). However, the
neutrinos of the three generations νe, νµ and ντ can periodically
transform into each other, that phenomenon is called neutrino
oscillation, see e. g. Tanabashi et al. (2018). Correspondingly,
these neutrinos νe, νµ and ντ are modeled as linear combinations
of underlying neutrinos ν1, ν2 and ν3. That linear combination
is called neutrino mixing and it is described by a mixing matrix
U , see e. g. (Tanabashi et al., 2018, S. 14).
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Similarly, the masses of the six quarks of the three genera-
tions (see Eq. 1.8) are derived on the basis of a mixing matrix,
called VCKM , see e. g. (Tanabashi et al., 2018, S. 12).

1.2.7 Gauge theory

Each symmetry inherent to elementary particle physics can be
described by an operator Ŝ. Each such operator Ŝ can be ex-
pressed in terms of a set of infinitesimal generators Ĝj and by
corresponding generalized angles αj as follows:

Ŝ = exp[Σn
j=1αj · Ĝj] (1.9)

Each local change of such symmetry can thus be expressed by
local changes of these angles:

αj(~x) (1.10)

In each local theory, such a local angle αj(~x) cannot propa-
gate faster than the velocity of light. Thus, each global theory
must be invariant with respect to such local angles αj(~x). This
statement constitutes the principle of gauge invariance, it can
be applied to each local theory, and it has been used in or-
der to derive several theories in elementary particle physics. In
the present book series, locality is appropriately generalized to
higher dimension.

1.2.8 Open question: formation of charge

The formation of the electric charge of particles presented in Eq.
(1.8) has neither been explained in the SMEP, see Tanabashi
et al. (2018), nor in classical electrodynamics, see for instance
Maxwell (1865), Jackson (1975), nor in quantum electrodynam-
ics, see Feynman (1985), Landau and Lifschitz (1982).



Chapter 2

Quantization of Gravity

In this chapter, we summarize parts of the new theory of quan-
tum gravity, see Carmesin (2021d). That theory describes the
quanta of spacetime, QST.

2.1 Results based on QST

In this section, we summarize some essential structures that are
formed by the QST.

1. These QST are the bosons that form the space in which
we live.

2. These QST are the elementary quanta that have been form-
ing and still form the time evolution of space since the Big
Bang.

3. These QST range from the Planck scale towards the macro-
scopic scale. So these QST include the smallest and most
elementary quanta that are possible in nature.

4. These QST are the bosons of the gravitational interaction,
the gravitons.

5. These QST are the elementary quanta that form the cur-
vature of spacetime at a mesoscopic level.

13
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6. These QST are the elementary quanta that form the grav-
itational field ~G∗ at a mesoscopic level1.

7. The QST form the neutrinos as well as the Higgs particle,
and so they cause the masses of all elementary particles,
see Carmesin (2019c).

8. In this book we show that QST are the elementary quanta
that form the electric charge too. As a consequence, QST
form the bosons of the electromagnetic interaction, so they
represent the elementary basis of classical electrodynamics,
see e. g. Maxwell (1865), Landau and Lifschitz (1971),
Jackson (1975), and of quantum electrodynamics, QED,
see e. g. Schwinger (1948), Landau and Lifschitz (1982),
Feynman (1985).

9. These QST have been tested by many different methods
(Carmesin, 2021d, Sect. 8.9). Thereby, the results are in
precise accordance with observation. In particular, these
QST explain the time evolution of spacetime, including the
H0-tension (Fig. 2.14), see Carmesin (2021c).

2.2 Smallest length achieved by QST

In this section, we show how the QST represent objects that can
range from the smallest length, the Planck length LP , towards
the largest observable length, the light horizon Rlh.

2.2.1 Smallest observable length

As a consequence of gravity and quantum physics, there is a
smallest observable length ∆x, it is the smallest observable un-
certainty or smallest observable standard deviation. That fact

1The gravitational field is marked by a G with a star.



2.2. SMALLEST LENGTH ACHIEVED BY QST 15

0 0.5 1 1.5 2

0

1

2

3

4

LP
1
2EP

Ẽx
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Figure 2.1: Shortest observable uncertainty (dot): Observable
states outside the event horizon of a possible black hole (hori-
zontal lines). Sufficient uncertainty according to the Heisenberg
uncertainty relation (vertical lines). Observable and sufficient
uncertainty (intersection).

has been proven (Carmesin, 2021a, PROP 4), and it is illus-
trated in Fig. (2.1). Hereby and in the following, we mark a
quantity by a tilde, if it is expressed in terms of the Planck
units, see table (8.3).

In essence, that fact can be understood directly as follows: A
single observation of a length requires a quantum object. The
observed length is at least equal to the Heisenberg uncertainty
∆x of that quantum object. The shortest possible uncertainty
∆x is a function of the energy E of that object, see area with
vertical lines in Fig. (2.1). The shortest observable structure of
that energy E of the quantum object is set by the Schwarzschild
radius of the black hole of that energy, see area with horizontal
lines in Fig. (2.1). Observable states correspond to the inter-
section of the areas with vertical and horizontal lines in Fig.
(2.1). That intersection exhibits a smallest observable length,
the Planck length, hereby G is the gravitational constant, see
table (8.1):
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Figure 2.2: An upper bound for the density: Observable states
(horizontal lines). Sufficient uncertainty (vertical lines). Ob-
servable and sufficient uncertainty (intersection). Dots show
states at an uncertainty ∆x̃, among these states, the observ-
able state with the largest energy is marked by the triangle.
Among these triangle states at the straight line, the state at
the dot has the largest density.

∆x = LP =

√
~ ·G
c3

= 1.616 · 10−35 m (2.1)

2.2.2 Highest possible density

As a consequence of the smallest observable length LP , there
occurs a highest possible density ρhighest:

ρhighest =
1

2
· 3

4π
· c2

G · L2
P

(2.2)

Hereby, the last fraction is called Planck density:

ρP =
c2

G · L2
P

=
c5

G2 · ~
(2.3)
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Rcurvature

Figure 2.3: Three locations form a triangle (solid lines). Line
orthogonal to a side of the triangle and through the middle of
that side (dotted). Dotted lines intersect at the center of the
circle (dashdotted) through the three locations. Each of the
three locations has the distance Rcurvature to the center. In that
manner, a radius of curvature can be measured by using three
locations.

Moreover, we identify 3
4π · ρP by the Planck density of a ball,

ρ̄P , see table (8.3):

ρhighest
1

2
· ρ̄P (2.4)

Alternatively, we apply the scaled density ρ̃ = ρ/ρ̄P , see table
(8.3):

ρ̃ ≤ 1

2
(2.5)

That fact has been proven (Carmesin, 2021a, PROP 5), and it
is illustrated in Fig. (2.2).

2.2.3 Planck scale

The smallest observable length LP and the highest possible den-
sity are two examples for quantities at the Planck scale. Note
that the quantities of the Planck scale have been elaborated for
each dimension D ≥ 3 of space, see e. g. Carmesin (2019c).
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2.2.4 Curvature and GR are mesoscopic concepts

Einstein (1915) described the theory of general relativity, GR,
in terms of the curvature of spacetime. However, the concept
of the curvature requires at least three observable locations of
the corresponding space or spacetime, see e. g. Landau and
Lifschitz (1971), Lee (1997).

How can this curvature be measured geometrically? For it
we present a straightforward, intuitive and well known method:
In the case of an anisotropic space or spacetime, the curvature
can be described by several radii of curvature Rcurvature, see e.
g. Lee (1997). Hereby, these radii correspond to respective
circles that can be defined in an appropriate space. The radius
of curvature Rcurvature of such a circle can be measured by using
at least three locations, see e. g. Fig. (2.3). In particular, these
three locations form a triangle, and the center of the circle is the
intersection of the three orthogonal lines through the middle of
the three sides of the triangle.

In GR, curvature is often defined by using four dots forming a
loop, see e. g. Landau and Lifschitz (1971), Straumann (2013),
Carmesin (1996), Stephani (1980), Moore (2013). In general, at
least three locations are required for a geometric measurement
of the curvature of a space or a spacetime. Correspondingly,
GR is a mesoscopic theory, as the essential concept of curvature
requires several locations.

2.2.5 QST range from LP towards Rlh

The quanta of spacetime, QST, describe the physical states
ranging from the Planck length, LP towards the light horizon,
Rlh, see e. g. Carmesin (2021d).
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observer1

Rlh

observer2

Rlh

Figure 2.4: Each observer is influenced by objects within the ball
with the center at the observer and the radius Rlh. Corre-
sponding to translation invariance, the laws of physics hold in
the respective balls of two observers, even if there is no causal
influence among the two observers.

So the QST establish the ultimately microscopic theory of
space and time. Moreover, if several observers with their re-
spective observable balls are considered, and if the principle
of translation invariance is used, then the QST describe space
beyond the light horizon, in addition, see Fig. (2.4).

2.3 QST unify concepts in Hilbert space

How can the detailed structure of spacetime be represented, if
we use regions of the size LP , without any substructure? The
essential structures are as follows:

(1) Local additional volumes describe the expansion of space.

(2) More generally, local deformations εij describe the symme-
tries and polarization modes of space. These modes are elabo-
rated in Sect. (2.4).

(3a) (Carmesin, 2021d, Chapters 1-5) showed that gravitational
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fields G∗i and corresponding tensors G∗ij form at a mesoscopic
scale by additional quanta of space2.

(3b) (Carmesin, 2021d, Chapters 1-5) showed that these fields
can be used in order to describe the rate of formation of addi-
tional quanta, including deformations, of space.

(3c) (Carmesin, 2021d, Chapters 1-5) showed that masses, en-
ergies or dynamical masses can also be used in order to describe
the rate of formation of additional quanta, including deforma-
tions, of space.

(4) (Carmesin, 2021d, Chapters 1-5) showed that the curvature
of spacetime forms at a mesoscopic scale by additional quanta
of space.

(5) Accordingly, the quanta of the above described additional
volumes or deformations of space, including the related varia-
tions of time, are called quanta of spacetime, QST. How can
these complex structures be described at the fully microscopic
level of the Planck length?

(6) According to the concept of quantum physics, complex ob-
jects can be described at a completely local and microscopic
level by using the description in an additional abstract space,
Hilbert space, see e. g. Landau and Lifschitz (1965). This con-
cept has been applied in the new theory of quantum gravity,
(Carmesin, 2021d, Chapters 1-6).

Using Hilbert space: The QST are quanta. So they can be de-
scribed in Hilbert space, see e. g. Landau and Lifschitz (1965).
States in Hilbert space can be described by functions of space
and time or by Fourier transforms of these, namely functions
of wavelength and frequency, or by other complete systems of
functions, including distributions, if necessary. In order to de-
velop the appropriate functions in Hilbert space for the case

2Moreover, in the following, we develop a microscopic concept of G∗i and G∗ij .
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of quantum gravity, Carmesin (2021d) derived fields, symme-
tries, differential equations or wave equations and functions de-
scribing quantum gravity. The quantization of these functions
provides the QST (Carmesin, 2021d, C. 6).

These QST exhibit wavelengths λ and periodic times T , thus
they have the potential to constitute spacetime at a microscopic,
at a mesoscopic and at a macroscopic level. Indeed, these
QST constitute spacetime in precise accordance with observa-
tion (Carmesin, 2021d, sections 6.6, 7.5, 8.5, 8.6). Carmesin
(2021c) illustrated the accordance of the QST with observation
in an especially accurate manner by explaining the H0-tension,
whereby the small local underdensity of Laniakea has been in-
cluded additionally, see e. g. Tully et al. (2014), Dupuy et al.
(2019), Böhringer et al. (2015). In particular, the dynamics
of the QST describes the evolution of spacetime since the Big
Bang, see Carmesin (2021d).

Moreover, QST provide the curvature of spacetime by av-
eraging the QST appropriately (Carmesin, 2021d, section 8.8).
Correspondingly, the QST transfer the gravitational interaction
and include the hypothetic graviton (Carmesin, 2021d, THM
34).

Additionally, the quanta of spacetime, QST, describe the var-
ious constituents of the vacuum, including the excitation states
of these constituents, the elementary particles, both in precise
accordance with observation, see Carmesin (2021a).

2.3.1 Why GR fails to reach the Planck scale

GR is based on the concept of curvature, whereby the geomet-
ric description of curvature requires at least three locations, so
GR cannot describe objects at the Planck length in sufficient
geometric detail.

Furthermore, GR cannot describe the evolution of the uni-
verse from the present light horizon Rlh backwards towards the



22 CHAPTER 2. QUANTIZATION OF GRAVITY

Planck length. The reason is that GR can describe that time
evolution only until the highest possible density ρhighest ≈ ρP
is reached. At that density, the present-day light horizon rep-
resents a length of approximately 0.003 mm (Carmesin, 2020b,
Fig. 5.7), see also Fig. (2.5) and Carmesin (2021b).

Altogether, we realize that neither space, nor spacetime, nor
the continuity of space, nor the dimensions of space are fixed or
constant. Instead, space, spacetime, the continuity of space and
the dimension of space evolve, and this evolution is described
by the QST. As a consequence, the QST range from the Planck
scale towards the horizon of objects that can have a causal
influence upon us, the light horizon.

2.3.2 Why QST reach the Planck scale

The quanta of spacetime can transform to higher dimensions
of space, see Carmesin (2018f), Carmesin (2018e), Carmesin
(2019c), Carmesin (2021d). Thus they describe dimensional
phase transitions. These dimensional phase transitions consti-
tute the rapid change of distance in the early universe, see e.
g. Carmesin (2017b), Carmesin (2021d). The increase of the
distance as a consequence of the decrease of the dimension is
illustrated in Fig. (2.6).

A quantitative analysis of that rapid increase provides the
time evolution in the early universe (see triangles in Fig. 2.5) in
precise accordance with observation (Carmesin, 2021d, chapter
8).

2.4 Modes of polarization of QST

In this section, we work out the modes of polarization charac-
terizing space, see e. g. Carmesin (2021d).
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Figure 2.5: Density limit of expansion of space: The time evolu-
tion of Rlh according to the GR (◦) ranges from the present-day
value 4.14 · 1026 m backwards to 0.003 mm, as at this point the
density (�) achieves the Planck density ρP = 5.155 · 1096 kg

m3

(dashdotted), and no higher density is physically possible.
However, the physically possible lengths can be as short as the
Planck length LP (loosely dotted). Hence the time evolution of
the GR is incomplete.
In contrast, we derive the complete time evolution of Rlh(t),
ranging from the current value 4.14 · 1026 m backwards to LP .
For it we apply GR (◦) combined with dimensional phase transi-
tions (4) derived by quantum gravity. Thereby, the phase tran-
sitions cause the extremely rapid distance enlargement in
the early universe
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Figure 2.6: 216 magnetic balls model local objects or observable
regions at high density and illustrate the relation between the
distance and the dimension D: If the dimension increases from
two (right) to three (left), then the largest distance decreases.
More generally and conversely, a decrease of the dimension D
implies an increase of the largest distance.

dy

dAy

dV = dAy · dy δVy = 0 = δV

δx

Figure 2.7: Deformation: A cube with a cross section dAy. At
each height δy, the cross section is shifted according to a factor
εx,y by δx = εx,y · δy.
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2.4.1 Modes of Modifications of space

In this section, we characterize the possible modifications of
space. For it, we explicate the linear modifications of space.
Hereby, these can be extended to general modifications by linear
combination and by forming Taylor series or similar systems of
functions.

Description by figures and tensors: We describe linear modifi-
cations by figures showing the modification (see e. g. Fig. 2.7)
and by corresponding tensors, see e. g. Sommerfeld (1978),
Landau and Lifschitz (1975). For it we use an infinitesimal cube
with a constant cross section dAy orthogonal to the y-direction
and with a height dy, see Fig. (2.7).

Non diagonal deformation: First, we describe a shift of each
cross section dAy: At each height δy, the cross section is shifted
according to a factor εx,y by δx = εx,y ·δy, see Fig. (2.7). Hereby
the factor εx,y is an element of the deformation tensor, see e.
g. (Sommerfeld, 1978, p. 3). The volume is invariant in a
non-diagonal deformation.

Diagonal deformation or elongation: Secondly, we describe a
shift of the cross section dAy in the direction orthogonal to
dAy: At each height δy, the cross section is shifted according
to a factor εy,y by δy = εy,y · δy, see Fig. (2.8). Hereby the
factor εy,y is a diagonal element of the deformation tensor, see
e. g. (Sommerfeld, 1978, p. 3). In a diagonal deformation, the
volume changes as follows:

δVy = dAy · δy (2.6)

Linear deformation: The above two deformations are linear. We
obtain a general linear deformation from the above two partic-
ular cases by allowing all coordinate directions. Thus, a general
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dy

dAy

dV = dAy · dy

δy

δVy = dAy · δy

Figure 2.8: Elongation: A cube with a cross section dAy is elon-
gated by an increment δy.

linear deformation is described by the following tensor:

ε̂i,j =
∂ri
∂rj

(2.7)

So the following shift of a cross section dAj is achieved:

δri = ε̂i,j · δrj =
∂ri
∂rj
· δrj (2.8)

The non-diagonal deformations, the diagonal deformations and
the combinations thereof form the possible modes of modifi-
cation.

2.4.2 Rate of change of a modification

In this section, we summarize the possible rates of change of
modifications.

Discovery of the dynamics: Of course, there are many possibil-
ities to discover the dynamics of the QST. Here we proceed as
follows. (Carmesin, 2021d, CHAP. 1-5) analyzed the symme-
try of the gravitational objects of the microscopic and of the
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macroscopic dynamics. As a result, I obtained a rate equation,
a DEQ. The solutions are either waves, describing the propa-
gation of the QST, including dark energy and the graviton. Or
the solutions are monotonically increasing or decreasing func-
tions of time. These describe the increase or decrease of the
number of QST, which in turn describe the Big Bang and the
dynamically conceivable Big Crunch, see Goodstein (1997), the
latter has not been observed, however.

Completely microscopic rate of change of volume: (Carmesin,
2021d, THM 6) showed that the rates of change of the volume
ε̇ are as follows:

ε̇2 =

(
δV

δt · dV

)2

= 24π ·G · ρ for isotropic expansion of space

(2.9)(
δV

δt · dV

)2

= 8π ·G · ρ for unidirectional vacuum formation

(2.10)
These equations are completely microscopic, as the density can
be expressed in terms of delta distributions.

Completely microscopic concept of the field: (Carmesin, 2021d,
Chapters 1, 2) showed that in the rates of change of the volume
ε̇,

ε̇2 = 8π ·G · ρ, (2.11)

the density can be expressed in terms of the field:

ρ =
G∗2

8π ·G · c2
(2.12)

So the field can be expressed as a root of the density:

G∗ =
√
ρ · 8π ·G · c2 (2.13)

Thus the concept of the field is completely microscopic, at the
Planck scale, as the density can be expressed in terms of delta
distributions.
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Completely microscopic concept of the DEQ: Using the above
relations, (Carmesin, 2021d, THM 7) showed that the rate of
change can be expressed at a completely microscopic scale of LP
and in a Lorentz invariant manner. Thereby, the rate gravity
scalar, RGS, is zero:

ε̇2 =
G∗2

c2
or ε̇2 − G∗2

c2
= 0 (2.14)

Hereby, the corresponding rate gravity four-vector, RGV
is as follows:

RGVi =


ε̇

G∗x/c
G∗y/c

G∗z/c

 (2.15)

.

Completely microscopic concept for general deformations: Using
the above relations, (Carmesin, 2021d, Sect. 2.4) showed that
the rate of change can be expressed at a completely microscopic
scale of LP and in a Lorentz invariant manner, also for the case
of general deformations. This is summarized next.

For it, we analyze the time derivatives of the corresponding
tensors ε̂i,j:

˙̂εij =
δ

δt

∂ri
∂rj

(2.16)

Rate of change of volume: Similar to Eq. (2.6), the increase of
volume is as follows:

δVj = dAj · δrj (2.17)

We divide by the volume dV = dAj · drj of the infinitesimal
cube. So we derive the following relative change of volume:

δVj
dV

=
δrj
drj

(2.18)
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Thus, a linear deformation with the tensor ε̂i,j causes the
following change of the volume:

δV

dV
= Σj=D

j=1

δVj
dV

= Σj=D
j=1

δrj
drj

= Trace(ε̂ij) (2.19)

Consequently, the rate of formed volume ˙̂ε is analogous to the
time derivative of the deformation tensor as follows:

δV

dV · δt
= ˙̂ε = Trace( ˙̂εij) (2.20)

We name the above tensor ˙̂εij the generalized rate tensor.

2.4.3 Gravity tensor

In this section, we introduce a tensor of gravity by the following
product (Carmesin, 2021d, Eq. 2.67):

Ĝij = G∗i ·G∗j (2.21)

2.4.4 A basic DEQ of spacetime

In order to derive the above structures formed by the QST,
Carmesin derived a DEQ describing the time evolution of space-
time (Carmesin, 2021d, THM 8(3)):

[Trace(ε̇ij)]
2 =

Trace(Ĝij)

c2
(2.22)

Next we illustrate the applicability of that DEQ by using it for
several examples, while the corresponding theory is presented
in Carmesin (2021d).

2.4.5 Single mode

If there is only one nonzero component of ε̇ij, then the trace in
the above equation can be neglected. So we derive:

[ε̇ij]
2 =

Ĝij

c2
(2.23)
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2.4.6 General deformations

The deformations εij describe small modifications of space in
a linear manner. Such small deformations can be combined
to general modifications of space, including nonlinear deforma-
tions, by using linear and nonlinear combinations of these εij.
This can be achieved systematically by using series of defor-
mations. Naturally, the range of convergence can be finite, a
corresponding divergence usually represents a phase transition.
Indeed, the theory of QST includes phase transitions.

Alternatively, nonlinear functions can be achieved in the
framework of Fourier transforms (Carmesin, 2021d, Chapters
5, 6).

2.4.7 From quanta to space, an example

The QST that establish the present-day three dimensional space
and that propagate in the z-direction, for instance, are de-
scribed by the following two tensors εij, describing two possible
directions of polarization (Carmesin, 2021d, DEF 7):

εi,j =

 1 0 0
0 −1 0
0 0 0

 (2.24)

εi,j =

 0 1 0
−1 0 0
0 0 0

 (2.25)

These QST are illustrated in Fig. (2.9). Each such QST repre-
sents an amount of volume of space. In this manner, the QST
form the space.
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Figure 2.9: Quanta of spacetime of this type extend in three di-
mensions and establish the space in which we live. Thereby,
these QST propagate at the velocity c, so they provide relativ-
ity of spacetime as a consequence.

0 1 2 3 4 5 x in m

Figure 2.10: Quanta of spacetime (dashed) form a one dimen-
sional space, for instance.
For |x| > 1, the QST form one meter of 1D-space per one meter
of the coordinate axis, on a mesoscopic and macroscopic level.
For |x| < 1, they form π meter of 1D-space per one meter of the
coordinate axis. So there occurs a curvature with the radius of
curvature R = 1 meter at a mesoscopic level.
This illustrates, how additional QST at |x| < 1 form additional
space and curvature of space at a mesoscopic and macroscopic
level.

2.4.8 From additional quanta to curvature

If there are additional QST in a local region, then this may
cause a curvature of space. Such additional QST are illustrated
by an example of a one dimensional space in Fig. (2.10).

2.4.9 From energy or mass to additional quanta

As a further example, we apply the above Eq. (2.22) for the
case in which the trace Trace(Gij) is equal to a gravitational
field

∑i=3
i=1G

∗
ii = G∗. In this case, Eq. (2.22) takes the following

form:

[Trace(ε̇ij)]
2 =

G∗2

c2
(2.26)
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The above square of the field corresponds to an energy density
u. So that energy density causes a change ε̇ij of QST, usually
corresponding to additional QST. These in turn cause a curva-
ture. In this manner, energy or a mass cause additional QST on
the elementary level and a curvature of space on the mesoscopic
level. For details see Carmesin (2021d).

Single mode: In the particular case of a single mode i, the above
equation is as follows:

[ε̇ii]
2 =

G∗2i
c2

(2.27)

We apply the root to the above equation:

ε̇ii = ±G
∗
i

c
(2.28)

This equation is an example for a QST that can be described
by a linear equation.

2.4.10 A longitudinal mode of spacetime

The above Eq. can be applied to a single Cartesian direction xj.

The respective deformation is εjj =
δxj
dxj

, describing an elonga-
tion δxj per distance dxj. The corresponding component of the
gravitational field is G∗j = Gjj. That component is described
by a gravitational potential:

G∗j = − ∂

∂xj
Φ(~r) (2.29)

The resulting DEQ is as follows:

c2 ·
(
∂

∂t
εjj

)2

−
(

∂

∂xj
Φ(~r)

)2

= 0 (2.30)

Solutions of that wave equation are planar waves (Carmesin,
2021d, THM 16). Such waves represent an especially simple



2.4. MODES OF POLARIZATION OF QST 33

Figure 2.11: Longitudinal rate gravity wave of QST, illustrated
at a mesoscopic level. The direction of elongation is equal to
the direction of propagation, as the QST has a longitudinal
polarization.

form of rate gravity waves, RGWs. Algebraically, such a mode
can be represented by a tensor, multiplied by a function of time
b(t):

εi,j =

 1 0 0
0 0 0
0 0 0

 · b(t) (2.31)

Geometrically and mesoscopically, such a mode represents a
linear chain of volumes propagating in the direction of the line,
whereby the volumes change periodically in the direction of the
chain. For an illustration see Fig. (2.11).

2.4.11 The modes of spacetime

The DEQ (2.22) describes many situations and systems, while
the above examples are just particular cases. That means, in
addition to the above planar mode of a RGW, Carmesin ana-
lyzed all possible modes of the RGWs (Carmesin, 2021d, THM
15(2)): A mode is represented by a tensor εij in Eq. (2.22). The
number of linearly independent modes is equal to the dimension
of the space of the tensors εij. Consequently, in the case of a D
dimensional space, the number of linearly independent modes
is equal to D2.

2.4.12 General RGWs or states spacetime

In order to obtain a generally applicable and most useful the-
ory, Carmesin (2021d) elaborated the general case, in which the
above modes of space form a linear superposition. That super-
position may include a finite or infinite number of modes or an
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integral over modes of RGWs. Hence a general RGW of space-
time is such a superposition. A corresponding description of
these general RGWs has been worked out, including a transfor-
mation to generalized coordinates of RGWs (Carmesin, 2021d,
THM 18).

2.4.13 Quanta of spacetime

In order to derive a full quantum theory, Carmesin (2021d)
quantized the above RGWs. Thereby, he derived the quantum
theory in various representations, so that the most appropriate
representation can be used in each particular application:

(1) A representation with a generalized Hamiltonian has been
derived.

(2) In that representation, a quantization has been derived in a
unique manner.

(3) Using that quantization, corresponding ladder operators â+

and â, number operators n̂ as well as the corresponding eigen-
values n have been derived (Carmesin, 2021d, THM 19).

(4) That theory applies to general systems of orthonormal func-
tions as well as to all tensors εij of deformation.

2.5 QST of the vacuum

Since the Big Bang, there exist QST. They form the vacuum.
In this section, we summarize the possible states of the vacuum
including the excitation states.
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Figure 2.12: Time evolution of the light horizon including dimen-
sional phase transitions.

2.5.1 QST of the present-day vacuum

Using the above QST, (Carmesin, 2021a, theorem 6) derived the
time evolution of the vacuum ranging from the Big Bang
towards the present-day3. Thereby, the present-day vacuum
is represented by three dimensional states ΨD=3, while former
states are represented by higher dimensional states ΨD≥4.

2.5.2 Time evolution of the vacuum

Only objects within the light horizon exhibit any influence upon
us, so only these objects can be observed by us. Accordingly, the
light horizon is a causal horizon, most generally. In the early
universe, the space was folded (see Figs. 2.6 and 2.12). At each
dimensional transition, the folding corresponds to a redshift.
That redshift does not apply to light, as light propagates in

3These results have already been derived earlier, see Carmesin (2018f), Carmesin
(2018e), Carmesin (2019c), Carmesin (2021d).
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space. However, that redshift applies to the QST, as these form
the space.

Going backwards in time, the space within the present-day
light horizon was in a smaller light horizon. Also the space
within the present-day Hubble radius RH = c/H0 was in a
smaller radius at earlier times. In the very early universe, that
space was folded to higher dimensions. Hereby, the largest
possible dimension of that space is called dimensional hori-
zon Dhorizon. At Dhorizon, the QST were at the Planck scale.
Thereby, Dhorizon ≈ 301, see e. g. Carmesin (2017b), Carmesin
(2021d), Carmesin (2021a).

Starting at that state at Dhorizon ≈ 301 and going forwards in
time, the QST experienced a series of phase transitions, whereby
the dimension decreased. That process is called cosmic un-
folding (see Figs. 2.6 and 2.12). The states of the QST of the
cosmic unfolding are the possible states of the vacuum, as these
states represent the possible folding states that are inside our
causal horizon.

Altogether, the present-day vacuum is constituted by the
present-day QST. Moreover, the possible folding states of the
QST within the causal horizon are possible excitation states of
the present-day vacuum.

2.5.3 Excitation states of the present-day vacuum

In this section, we explicate the states of the vacuum in more
detail. The states (QST) of the time evolution of the vacuum
exhibit a higher energy than the states (QST) of the present-day
vacuum. Consequently, the states ΨD≥4 of that time evolution
are possible excitation states of the present-day vacuum.

As a consequence of the above tensor modes or modes of
modification of the QST, the QST of the vacuum form addi-
tional excitation states by changing from a low energy tensor
mode ΨD,q to a high energy tensor mode ΨD,q′. Hereby, we
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binding

Figure 2.13: Illustration of the binding of three longitudinal QST
to a Higgs particle.
Before the binding, the three longitudinal QST propagate freely,
at straight paths.
After the binding, the three longitudinal QST form a super-
position. Thereby, a common direction of propagation occurs.
For each QST, the component parallel to that common direc-
tion propagates freely, whereas the component orthogonal to
that common direction is bound and does not propagate freely.
In a semiclassical description, that effect is illustrated by three
wiggly lines.

mark a mode by a subscript q (Carmesin, 2021a, chapter 7).

Moreover, each mode ΨD,q′ provides excitation states as a
consequence of the quantization, namely the states achieved by
the ladder operators. This implies excitation states numerated
by the eigenvalues n of the number operator n̂, ΨD,q′,n. In par-
ticular, a zero-point oscillation, ZPO, has the eigenvalue n = 0,
so it is a state ΨD,q′,n=0 (Carmesin, 2021a, chapter 7).

For instance, a state with a polarization mode q of the dark
energy represents a state of the vacuum, and it can be excited
to another state with another polarization mode q′.

2.6 QST form elementary particles

In this section, we summarize the formation of elementary par-
ticles from the above QST.

The elementary particles can be generated from energy. For
instance, this can be achieved in accelerators such as the large
hadron collider, LHC. Thereby, many elementary particles have
been found and organized in the SMEP, see Chap. (1).
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Carmesin (2021a) showed how the excitation states of the
vacuum form elementary particles, for a summary see section
(2.5.3).

Hereby, the most elementary modes are most likely to form,
these are longitudinal modes described by longitudinal tensors,
see (Carmesin, 2021a, DEF 6). Moreover, three such modes can
constitute a three dimensional object, see (Carmesin, 2021a,
THM 6(e)). Hereby, the binding energy has been modeled,
derived and calculated, see (Carmesin, 2021a, Sect. 9.4 and
THM 9).

In fact, (Carmesin, 2021a, theorems 6-9) showed that such
bound triples of the most elementary QST can form elementary
particles, whereby the triples of lowest energy exhibit masses
that are in precise accordance with observation.

2.7 QST explain the Hubble tension

In this section, we apply the QST to the time evolution of space.
With it we analyze, how the observed values of the Hubble con-
stant H0 depend on the time or redshift, at which the probe
had been emitted, that is used in that observation. As a re-
sult, we derive the observed values H0,obs as a function of the
redshift z. That function H0,obs(z) derived by quantum gravity
is in precise accordance with observation, see Carmesin (2021c)
and Fig. (2.14). For details see e. g. Carmesin (2021c) or
Carmesin (2021a), Carmesin (2021d), Carmesin (2018e). Fig.
(2.14) illustrates that the QST describe the cosmological time
evolution and the dark energy in an especially precise manner.

2.8 QST explain cosmological parameters

The QST explain five of the six parameters of the standard
model of cosmology. The remaining parameter essentially rep-
resents the present-day time after the Big Bang. So that param-
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eter cannot be explained further, it is an independent parameter
of its own. We emphasize that these five cosmological parame-
ters as well as the theoretical H0(z)-values in Fig. (2.14) have
been derived from the QST (that means from quantum gravity)
without using any fit parameter. So the only numerical input
are the four universal constants G, c, kB and h. All parameters
and H0-results are in precise accordance with observation (that
means within the errors of observation), see Carmesin (2021a).

So the QST have been tested in the field of cosmology in a
very robust and precise and integrating manner, and these QST
present the quanta and modes of excitation of the vacuum. So
these QST are an ideal basis for an explanation of elementary
particles. Indeed, the formation of masses has already been
explained, see Carmesin (2021a).

Accordingly, in this book, we analyze how the QST forming
an elementary particle interact within that particle and how
they form the electromagnetic interaction as an effective inter-
action based on gravity.
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Figure 2.14: Observed global Hubble constant H0,obs,global as a
function of the redshift z of the probe.
Probes:
4, megamaser, Pesce et al. (2020).
N, surface brightness, Blakeslee et al. (2021).
�, distance ladder at small z, Riess et al. (2021).
�, distance ladder at large z, Suzuki et al. (2011).
�, gravitational wave, Escamilla-Rivera and Najera (2021).
◦, baryonic acoustic oscillations, BAO , Philcox et al. (2020),
Addison et al. (2018)).
•, weak gravitational lensing and galaxy clustering, Abbott
et al. (2020)).
×, strong gravitational lensing, Birrer et al. (2020).
⊗, CMB, Planck-Collaboration (2020).
Theories:
both without any fit
· · · · · · · · · Semiclassical dark energy theory, Carmesin (2021d).
−−−−− quantum theory of dark energy.
under-densities of the local universe (see Tully et al. (2014),
Dupuy et al. (2019), Böhringer et al. (2015)) have been applied
to probes at z < 0.04, for details see Carmesin (2021c).



Chapter 3

QST Form Electric Charge

In this chapter, we elaborate the formation of electric charge
and electromagnetic interaction from the quanta of spacetime,
QST. Thereby, we derive the fine-structure constant α and the
elementary charge e from the QST. We work out the basic pro-
cess of the formation of electric charge. In chapter (4), we an-
alyze the symmetries of that charge, as these are essential and
very useful, see Tanabashi et al. (2018). In a following chapter
(5), we use the charge obtained by QST in order to derive elec-
trodynamics and to show how quantum electrodynamics, QED,
can be obtained on that basis.

The QST generate fields G∗ that are again represented by
QST. We analyze the effect of such second order QST in terms
of corrections, and we elaborate these in chapter (6). Alto-
gether, our concept provides a relative difference between the
theoretical elementary charge and the observed charge of the
electron of 5.4 · 10−8, this difference is within the errors of ob-
servation.

3.1 Derivation of the electric field constant

The electric field constant ε0 is equal to one divided by the
product of the magnetic field constant µ0 and c2 (Tanabashi

41
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et al., 2018, Table 1.1 or Sect. 7):

ε0 =
1

µ0 · c2
(3.1)

By definition, the magnetic field constant is equal to 4π multi-
plied by 10−7 N

A2 :

µ0 = 4π · 10−7 N

A2
(3.2)

The above two Eqs. yield:

ε0 =
107

4π · c2

N

A2
= 8.854 187 82 · 10−12 F

m
(3.3)

Hereby, the unit Farad per meter can alternatively be expressed
by Coulomb per Volt and per meter.

3.2 QST form charges within particles

In this section, we develop the concept of the formation of
charge within particles. Thereby the particles as well as the
charges are formed by QST.

The charge is not assumed here, it is derived. For it we
analyze the constituents of elementary particles with electric
charge. The mass of such particles is caused by the Higgs par-
ticle via the Higgs mechanism, see Tanabashi et al. (2018).

The Higgs particle has already been explained by the bind-
ing of three QST, each corresponding to a particular excitation
of the vacuum (Carmesin, 2019c, Chap. 9). These excitation
states of the vacuum have been derived by an analysis of the
cosmic unfolding, and they are based on the light horizon, it is
the horizon at which objects can just exhibit a causal influence
upon us.

As a consequence, these three QST exhibit an internal dy-
namics inside the elementary particle. For comparison, another
internal dynamics is already well known from atoms: In an atom
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there are a nucleus and electrons, these exhibit an internal dy-
namics, and thereby photons can be emitted and absorbed. We
will show in this chapter, that the internal dynamics of the three
QST can emit quanta which represent the electric field. For it
we summarize properties of these three QST first:

The masses of all particles with an electric charge are caused
by the Higgs-particle. That particle is constituted by a bound
triple of QST with the eigenvalues n = 1, n = 2 and n = 3,
for an illustration see Fig. (2.13). Accordingly, we model each
particle with an electric charge by a bound triple of QST with
these eigenvalues n = 1, n = 2 and n = 3:

Ψparticle with electric charge = triple(Ψn=1,Ψn=2,Ψn=3) (3.4)

3.3 Circular frequencies of the constituents

In this section, we elaborate the circular frequencies of the three
constituents of an elementary particle with an electric charge,
see Eq. (3.4), Fig. (2.13) and Sect. 3.2). The circular frequency
ω1 of the constituent Ψn=1 is three times the circular frequency
ω0 of the corresponding ZPO Ψn=0, see e. g. (Carmesin, 2021d,
THM 19):

ω1 = 3 · ω0 = (2n+ 1) · ω0 (3.5)

Similarly, the circular frequency ω2 of Ψn=2 is five times ω0:

ω2 = 5 · ω0 = (2n+ 1) · ω0 (3.6)

In the same manner, ω3 of Ψn=3 is seven times ω0:

ω3 = 7 · ω0 = (2n+ 1) · ω0 (3.7)

Proposition 1 Circular frequencies

A Higgs Boson as well as a particle that can form an elec-
tric charge are constituted by three QST as follows (Carmesin,
2021a, Chapters 7-9):
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binding
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~pcommon
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Figure 3.1: Momenta of two longitudinal QST before and after
binding: After the binding, parallel components ~p1|| and ~p2|| re-
main unchanged. However, the orthogonal components ~p1⊥ and
~p2⊥ vary with time around the value ~p⊥ = 0, as a consequence
of the binding.

(1) These three QST are characterized by the following eigen-
values of the number operator: n1 = 1, n2 = 2 and n3 = 3.

(2) The circular frequencies can be described by using the cir-
cular frequency ω0 of the ZPO as follows:

ωj = (2nj + 1) · ω0 = n̄j · ω0 with n̄j = 2nj + 1 (3.8)

3.4 Formation of a local mass

When the three QST of a charged elementary particle form a su-
perposition and are bound to a triple, then their three momenta
~p1, ~p2 and ~p3 add up to a common momentum (Fig. 3.1):

~ptriple = ~p1 + ~p2 + ~p3 (3.9)

Thereby, the velocity of the triple may be below c (Carmesin,
2021a, PROP 17):

typically v < c (3.10)
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A velocity smaller than c is only possible for a nonzero own
mass, according to special relativity. Correspondingly, the triple
exhibits a common nonzero own mass mc

mc > 0 (3.11)

In this manner the QST can form a common mass mc
1.

3.5 Separation of parallel component

In this section, we analyze the possible gravitational interac-
tion among the three QST that are bound in a particle Fig.
(2.13). For that purpose and for each of the three QST, we
analyze the component parallel to the propagation of mc and a
corresponding orthogonal component (Fig. 3.1).

3.5.1 Components of the momenta

The momentum ~pj of each QST in section (3.2) can be regarded
as a linear combination of the component ~pj|| parallel to ~ptriple

and of the component ~pj⊥ orthogonal to the momentum of the
triple ~ptriple:

~pj = ~pj|| + ~pj⊥ (3.12)

3.5.2 Components of the wave functions

Before the binding, each QST propagates freely according to
its momentum ~pj. So the QST is described by a plane wave as
follows:

Ψj = ν · exp

(
iωjt− i~r ·

~pj
~

)
(3.13)

1Note that an observer at a distance of that triple might observe a different mass
mdistance, as that observer measures the mass on the basis of the observed QST. In this
section, we do not derive the mass that is observable at a large distance.
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Hereby, ν represents a normalization factor, eventually in the
framework of distributions. That function can be factorized:

Ψj = ν ·exp (iωjt) ·exp

(
−i~r|| ·

~pj||
~

)
·exp

(
−i~r⊥ ·

~pj⊥
~

)
(3.14)

Thereby, the first exponential describes an oscillation. The sec-
ond exponential represents the propagation in the direction of
propagation of the common mass mc:

Ψj|| = exp

(
−i~r|| ·

~pj||
~

)
(3.15)

Similarly, the third exponential describes the motion orthogonal
to the direction of propagation of the common mass mc.

Ψj⊥ = exp

(
−i~r⊥ ·

~pj⊥
~

)
(3.16)

Altogether, the wave function is factorized as follows:

Ψj = ν · exp (iωjt) ·Ψj|| ·Ψj⊥ (3.17)

3.5.3 Wave function Ψj after the binding

After the binding of the three QST in section (3.2), Ψj|| remains
unchanged, as the triple of the QST propagates freely. However,
the perpendicular component Ψj⊥ is essentially changed by the
binding of the three QST, as the QST are bound and cannot
escape in the orthogonal direction. That effect is illustrated by
the wiggly lines in Fig. (2.13).

3.5.4 Condition of the binding

In this section we show that the three QST can be bound even
by a small mass mc. At a distance r from the mass mc, the
escape velocity is as follows:

vesc =
2 ·G ·mc

r
(3.18)
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Waveguides: A waveguide (e. g. a glass fiber) binds light. For
it, the waveguide is produced with different indices of refraction.
Thereby, the inner region has the highest index of refraction
(Taylor and Yariv, 1974, p. 1045):

n =

√
εr
ε0

and nmax =

√
εr,max
ε0

(3.19)

Hereby, εr is the relative electric permittivity (Jackson, 1975,
Eq. 4.38). So the inner region has the smallest velocity of
propagation:

c(εr) =

√
1

ε0 · εr · µ0 · µr
and cmin =

√
1

ε0 · εr,max · µ0 · µr
(3.20)

Gravitational lenses: A gravitational lens can be described by
the index of refraction n(~r) at locations ~r in the region of the
lens (Straumann, 2013, Sect. 5.8.1). Correspondingly, the dy-
namic mass or mass mc acts as a gravitational lens. Thus it can
be described by the index of refraction n(~r). So it can effec-
tively act as a waveguide, provided that the vertical component
of the wave vector is sufficiently small compared to the parallel
component of the wave vector (Taylor and Yariv, 1974, p. 1045,
Fig. 2).

Similarly, we estimate the formation of a bound mode of
propagation or of an effective waveguide by analyzing, whether
the perpendicular component of the velocity of propagation vj⊥
is below the escape velocity.

Perpendicular component vj⊥ below vesc? We analyze a QST that
propagates at c. We name its momentum pj. We call its per-
pendicular component of the momentum pj⊥. We denote its
perpendicular component of the velocity by vj⊥. According to
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vector analysis, the following relation holds:

pj⊥
pj

=
vj⊥
c

(3.21)

That equation is solved for vj⊥ as follows:

vj⊥ = c · pj⊥
pj

= c · cosαj (3.22)

Hereby, αj is the angle enclosed by ~pj⊥ and ~pj (Fig. 3.1).

The QST is bound, if the perpendicular component vj⊥ is
smaller than the escape velocity:

vj⊥ < vesc → QST is bound (3.23)

The following statement is equivalent:

cosαj <
vesc
c
→ QST is bound (3.24)

Time delay: When light or another object propagating at the
velocity of light c passes a gravitational lens, then there occurs a
time delay, whereby theory and observation are in precise accor-
dance (Straumann, 2013, Sect. 4.5). Thus, the QST enclosed
in a triple of QST exhibit a time delay. So the triple propagates
slower than the velocity c. Consequently, the triple exhibits an
own mass m0 and the corresponding amount of inertia.

Proposition 2 Formation of inertia

The masses of elementary particles form by the binding of three
QST in a triple of QST (Carmesin, 2021a, Chapters 7-9).

Thereby, the inertia forms as follows:

(1) As a consequence of the binding, these three QST form a
propagating center of energy.

(2) That center of energy acts as a gravitational lens, so it can
be described by a relatively high refractive index in the center.
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(3) Accordingly, that center of energy acts as a waveguide that
binds the three QST, whereby the gravitational lens causes a
time delay (Straumann, 2013, Sect. 4.5).

(4) As a consequence of the time delay, a distant observer mea-
sures a propagation of the triple at a velocity below c. Thus that
observer identifies an own mass m0 of the triple and a corre-
sponding inertia of the triple.

3.5.5 Wave function Ψ after the binding

In this section, we derive the wave function Ψ|| of the mass mc

after the binding.
The charged elementary particle is formed by binding three

QST with wave functions Ψ1, Ψ2 and Ψ3. The wave function Ψ
of the triple is the sum of the three wave functions:

Ψ = Ψ1 + Ψ2 + Ψ3 (3.25)

Each summand is composed of the above four factors (Eq. 3.17):

Ψ = ν1·eiω1t·Ψ1||Ψ1⊥+ν2·eiω2t·Ψ2||Ψ2⊥+ν3·eiω3t·Ψ3||Ψ3⊥ (3.26)

Each mode Ψj includes the respective circular frequency ωj.
So the state of the triple contains the original three circular
frequencies. So the spectrum of the triple is expressed as follows:

spectrum(Ec) = {ω1, ω2, ω3} (3.27)

3.6 Oscillation of orthogonal component

Each perpendicular component Ψj⊥ of the state Ψ of the triple
basically oscillates at the respective circular frequency ωj (Eq.
3.26):

spectrum(Ψj⊥) = {ωj} (3.28)
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ω0, x̂j→i,0
G∗α,j→i

xβ xα

x̂j→i

ωi, ~pi⊥

~pcommon, mc, G
∗
mc

{ωj, ωk, ωi}

Figure 3.2: Forced oscillation (dotted) with amplitude x̂j→i and
with circular frequency ωj:
It is caused by the field G∗mc

oscillating at ωj.
That oscillation emits QST at ω0, with transverse fields G∗α,j→i,
orthogonal to the radial directions of propagation xβ.
Altogether, there occur six such forced oscillations with ampli-
tudes x̂i→j, x̂i→k, x̂j→i, x̂j→k, x̂k→i, x̂k→j.

Proposition 3 Spectra in a triple of QST

In a triple of QST there occur the following spectra:

(1) The propagating center of energy Ec exhibits the three oscil-
lations of the three QST:

spectrum(Ec) = {ω1, ω2, ω3} (3.29)

(2) Each of the three QST of the triple exhibits its own circular
frequency ωj and a component Ψj⊥ orthogonal to the propaga-
tion of Ec, whereby Ψj⊥ has the circular frequency ωj:

spectrum(Ψj⊥) = {ωj} (3.30)
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3.7 Forced oscillation

The three constituents in section (3.2) are bound together in
an elementary particle. In this section, we analyze the internal
dynamics exhibited by these three QST inside the particle, we
mentioned that dynamics already in section (3.2).

As the three QST are longitudinal quantized waves with
three different circular frequencies ω1, ω2 and ω3, there occur
six forced oscillations: ω1 causes a forced oscillation at the QST
with ω2, and we name the amplitude of that oscillation x̂1→2.
In the same manner there occur forced oscillations with ampli-
tudes x̂1→3, x̂2→1, x̂2→3, x̂3→1 and x̂3→2.

One might imagine such a forced oscillation by an everyday
life analogy: In a violin, or in any other bow instrument such
as a contrabass or a viola, the bow causes an oscillation of the
chord. Similarly, one longitudinal QST causes a forced oscilla-
tion at another longitudinal QST. Altogether, six such forced
oscillations occur and form a small orchestra (in the analogy).

We will derive the physical properties of these forced oscilla-
tions. Moreover, we will show that these forced oscillations ex-
hibit the properties of the electric field of an elementary charge
in a very precise manner. Accordingly, the three QST exhibit
the properties of an elementary charge in a very precise manner.

In this section, the forced oscillations among the constituents
are elaborated, see Fig. (3.2).

3.7.1 Homogeneous DEQ of an elongation

A constituent with a circular frequency ωi and a longitudinal
normalized direction vector ~ei can be described as a set of cou-
pled harmonic oscillators, each of which obeys the following
equation of motion of the acceleration of the elongation xi:

ẍi + ω2
i · xi = 0 (3.31)
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Thereby, these oscillators exhibit the same circular frequency
ωi in each transverse direction, as there is no physical reason
for an anisotropy. Correspondingly, the tensors factorize in the
equation of motion of the QST (Carmesin, 2021d, Sect. 5.6.4).
Accordingly, the transverse modes can exhibit a corresponding
oscillation forced by another constituent.

3.7.2 Inhomogeneous DEQ of an elongation

Another constituent with a circular frequency ωj and a longi-
tudinal normalized direction vector ~ej generates a gravitational

field ~G∗j as follows:

~G∗j = Ĝ∗j · ~ej · cos(ωj · t+ φ) (3.32)

Hereby, φ is a phase, Ĝ∗j is the amplitude of the field. That
amplitude is caused by the mass mc, thus that amplitude is
equal to the amplitude of the field |~G∗mc

| or G∗mc
, for short:

Ĝ∗j = G∗mc
= |~G∗mc

| (3.33)

The above field represents an additional acceleration of the con-
stituent with the circular frequency ωi. As a consequence, the
constituent oscillating at ωj causes a forced oscillation of the
constituent marked by i, whereby the elongation xj→i has a
transverse direction. For that transverse direction, the homo-
geneous DEQ (3.31) is supplemented by the additional acceler-
ation represented by the field. So the following inhomogeneous
DEQ holds:

ẍj→i + ω2
i · xj→i = G∗mc

· cos(ωj · t) (3.34)

3.7.3 Amplitude of the forced oscillation

According to the above inhomogeneous DEQ (3.34), there oc-
curs a forced oscillation as follows (Landau and Lifschitz, 1976,
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§ 22):

xj→i =
G∗mc

ω2
i − ω2

j

· cos(ωj · t) (3.35)

Amplitudes of forced oscillations: Eq. (3.35) includes the am-
plitudes of forced oscillations:

x̂j→i =
G∗mc

ω2
i − ω2

j

(3.36)

Eigenvalues nj in forced oscillations: The circular frequency ωj
of a forced oscillation is a product of the circular frequency ω0

of the respective ZPO and the factor 2nj + 1, whereby nj is the
eigenvalue of the number operator, see PROP (1):

ωj = ω0 · (2nj + 1) = ω0 · n̄j (3.37)

Consequently, the amplitudes of forced oscillations (Eq. 3.35)
are as follows:

x̂j→i =
G∗mc

ω2
0 · |n̄2

i − n̄2
j |

(3.38)

In particular, the following fields can be derived: For the first
eigenvalue nj = 1 with j = 1, the other eigenvalues are ni = 2
with i = 2 and nk = 3 with k = 3. Thus the following factors
n̄j, n̄i and n̄k are derived, see PROP (1):

n̄1 = 3; n̄2 = 5; n̄3 = 7 (3.39)

Proposition 4 Forced oscillation in the triple

In a triple of QST, there occur the following forced oscillations:

(1) The center of energy Ec oscillates at circular frequencies ωj
with j ∈ {1, 2, 3}. Thereby, each of these oscillations ωj causes
a forced oscillation at a QST with ωi6=j in the triple. Hereby,
the following amplitude is generated:

x̂j→i =
G∗mc

ω2
i − ω2

j

(3.40)



54 CHAPTER 3. QST FORM ELECTRIC CHARGE

(2) Correspondingly, there occur six forced oscillations in the
triple, whereby the amplitudes are as follows:

x̂1→2, x̂1→3, x̂2→1, x̂2→3, x̂3→1, x̂3→2 (3.41)

3.8 Transverse effective field

In this section, we show that the forced oscillations cause a
transverse field, see Fig. (3.2).

3.8.1 Quanta of spacetime forming the field

A mass mc, that forms a gravitational field G∗mc
, generates that

field as follows (Carmesin, 2021d, Sect. 8.8 and THM 34). The
mass emits (or absorbs) the QST that establish the dark energy.
These are ZPO. These QST form additional space. That addi-
tional space generates a curvature of spacetime. That curvature
of spacetime represents the generated field G∗mc

.

Zero-point oscillations: Accordingly, QST that represent zero-
point oscillations are emitted (or absorbed) here. So these
QST have the circular frequency ω0 of the ZPO. Moreover, these
QST propagate (locally) unidirectional in a radial direction xβ,
see Fig. (3.2). The field is oriented in a direction xα, see Fig.
(3.2). Thus the corresponding tensor is εα,α. Moreover, we
apply the definition of the tensor εα,α. For it, we remind the
corresponding field equation of the QST (Eq. 2.26):

c · ε̇α,α = ±G∗α,j→i (3.42)

Hereby, the directions of the nonzero tensor element and the
field coincide and are both transverse to the direction of prop-
agation (Fig. 3.2).

Moreover, we apply the definition of the tensor εα,α:

c · ∂
∂t

δxα,j→i
dxα

= ±G∗α,j→i (3.43)
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Figure 3.3: Forced oscillation (dashed) with amplitude x̂j→i (solid
line) emits QST (loosely dotted) with amplitude x̂j→i,0 (densely
dotted). Thereby, the amplitudes are equal, x̂j→i,0 = x̂j→i, sim-
ilarly to the plucking of a chord of a guitar or of any other
plucking instrument such as a cittern.

Energetically, these emitted ZPOs correspond to the five dimen-
sional space, (Carmesin, 2021a, THMs 8, 9).

3.8.2 Principle of equal amplitudes

Emission of quanta: A forced oscillation with its amplitude x̂j→i
emits quanta with their own amplitude x̂j→i,0.

Own frequency of emitted quanta: The emitted quanta have
their own frequency. It is different from the frequencies ωj→i =
ωj of the emitting forced oscillations. Similarly, a photon emit-
ted by a hydrogen atom has its own frequency, different from
the frequencies of the electron or proton of the atom.

Independent propagation: The emitted quanta propagate inde-
pendently. Accordingly, they are not stimulated permanently
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like a forced oscillation. Instead, an emitted quantum is ini-
tially elongated, similarly as a chord of a guitar (or of any other
plucking instrument) is elongated when it is plucked. Thereby
the amplitudes of the plucking and of the chord are equal, see
Fig. (3.3). Correspondingly, we expect x̂j→i = x̂j→i,0. Accord-
ingly, we formulate the following principle.

Principle: A forced oscillation is characterized by its amplitude
x̂j→i, see Eq. (3.38). Analogously, an emitted QST is charac-
terized by its own amplitude x̂j→i,0. These two amplitudes are
equal:

x̂j→i = x̂j→i,0 (3.44)

Definition 1 Principle of equal amplitudes

When a forced oscillation of a triple of QST with an ampli-
tude x̂j→i emits a QST with an amplitude x̂j→i,0, then the two
amplitudes are equal:

x̂j→i = x̂j→i,0 (3.45)

3.8.3 Field Ĝ∗α,j→i generated by transverse QST

At a location in space, an emitted QST represents an oscillator
with the circular frequency ω0 and the amplitude x̂j→i,0. So the
elongation xα,j→i (see Eq. 3.43) is as follows:

xα,j→i(t) = x̂j→i,0 · cos(ω0 · t) (3.46)

That elongation is inserted into the field equation (see Eq.
3.43):

c · ∂
∂t

δxα,j→i(t)

dxα
= ±G∗α,j→i (3.47)

In the limit of small dxα, the above fraction is the derivative:

lim
dxα→0

δxα,j→i(t)

dxα
=

∂

∂xα
xα,j→i(t) (3.48)
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The application of the chain rule yields:

∂

∂xα
xα,j→i(t) =

∂t

∂xα
· ∂
∂t
xα,j→i(t) (3.49)

Hereby, the first derivative in the above equation is equal to 1
c

(Carmesin, 2021d, Sect. 5):

∂

∂xα
xα,j→i(t) =

1

c
· ∂
∂t
xα,j→i(t) (3.50)

Using the above limit (see Eqs. 3.48, 3.50) to Eq. (3.50) pro-
vides the following field equation:

c · ∂
∂t

1

c
· ∂
∂t
xα,j→i(t) = ±G∗α,j→i (3.51)

The factors with c in the above Eq. cancel. Applying Eq. (3.46)
to the above Eq. yields the following field Eq.:

∂

∂t
· ∂
∂t
x̂j→i,0 · cos(ω0 · t) = ±G∗α,j→i (3.52)

Evaluation of the derivatives implies the field Eq. shown below:

ω2
0 · x̂j→i,0 · cos(ω0 · t) = ±G∗α,j→i (3.53)

Insertion of the amplitude (Eq. 3.38) yields the following Eq.:

ω2
0 ·

G∗mc

ω2
0 · |n̄2

i − n̄2
j |
· cos(ω0 · t) = ±G∗α,j→i (3.54)

Simplification of the above term provides the field Eq. in the
next line:

G∗mc

|n̄2
i − n̄2

j |
· cos(ω0 · t) = ±G∗α,j→i (3.55)

The corresponding amplitude Ĝ∗α,j→i of the emitted field is as
follows:

Ĝ∗α,j→i =
G∗mc

|n̄2
i − n̄2

j |
without process of emission (3.56)
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Thereby, the process of the emission has not yet been analyzed,
it is investigated in section (3.9). Hereby, the field G∗mc

is caused
by the mass mc (Carmesin, 2021d, THMs 7 and 17):

G∗mc
=
mc ·G
r2

(3.57)

The field of all transverse QST emitted at a time is called as
follows:

G∗emitted,⊥ = amount of all transverse QST (3.58)

Hereby, the details are worked out below, see Eq. (3.70).

Proposition 5 QST emitted by forced oscillation

A forced oscillation with amplitude x̂j→i emits QST with the
following amplitude:

Ĝ∗α,j→i =
G∗mc

|n̄2
i − n̄2

j |
without process of emission (3.59)

Hereby, the field of mc is as follows:

G∗mc
=
mc ·G
r2

(3.60)

3.9 Process of emission

During the process of emission, the emitting mc loses energy, so
the field G∗mc

is reduced in a proportional manner. That causes
a reduced emission, in turn. In this section, we analyze and
elaborate the effect of that reduction.

When a transverse QST with a field Ĝ∗α,j→i is emitted, and
when a fraction q ∈ [0; 1] of that QST has already been emitted,
then the field G∗mc

is reduced by Ĝ∗α,j→i ·q. So the following field
remains:

G∗mc,rest
= G∗mc

− Ĝ∗α,j→i · q (3.61)
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In this case, the remaining field causes the emitted field, ac-
cordingly, Eq. (3.56) is generalized as follows:

Ĝ∗α,j→i =
G∗mc,rest

|n̄2
i − n̄2

j |
(3.62)

Inserting yields the next Eq.:

G∗mc,rest
= G∗mc

−
G∗mc,rest

|n̄2
i − n̄2

j |
· q (3.63)

The solution of that Eq. is as follows:

G∗mc,rest
= G∗mc

· 1

1 + q · 1
|n̄2i−n̄2j |

(3.64)

Integration: The average of the fraction in Eq. (3.64) is ob-
tained by integration:

Ij→i =

∫ 1

0

1

1 + q · 1
|n̄2i−n̄2j |

dq (3.65)

The integral is evaluated analytically:

Ij→i = |n̄2
i − n̄2

j | · ln

(
1 +

1

|n̄2
i − n̄2

j |

)
(3.66)

So the averaged field is as follows:

〈G∗mc,rest
〉 = G∗mc

· Ij→i (3.67)

Application of the above Eq. and of Eq. (3.62) yields the field:

Ĝ∗α,j→i = 〈Ĝ∗α,j→i〉 = G∗mc
· ln

(
1 +

1

|n̄2
i − n̄2

j |

)
(3.68)

Hereby, we denote 〈Ĝ∗α,j→i〉 by Ĝ∗α,j→i, for short.
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Proposition 6 Process of emission

During the process, in which a forced oscillation with amplitude
x̂j→i emits a QST, the forced oscillation loses energy. That
effect reduces the emitted amplitude as follows:

(1) There occurs an averaged amplitude 〈Ĝ∗α,j→i〉. It is also

named Ĝ∗α,j→i for short.

(2) The averaged amplitude is as shown below:

Ĝ∗α,j→i = 〈Ĝ∗α,j→i〉 =
〈G∗mc,rest

〉
|n̄2
i − n̄2

j |
= G∗mc

· ln

(
1 +

1

|n̄2
i − n̄2

j |

)
(3.69)

3.10 Emission and Absorption of quanta

The QST with eigenvalue n3 = 3 and n̄3 = 7 has a negative
sign (Carmesin, 2021a, Sect. 9.4). We remind that this is
a consequence of the minimization of the energy of the triple
(Carmesin, 2021a, Chap. 9).

So the field G∗emitted,⊥ is derived as follows:

G∗emitted,⊥ = G∗mc
·√

Ĝ∗2α,1→2 + Ĝ∗2α,1→3 + Ĝ∗2α,2→1 + Ĝ∗2α,2→3 − Ĝ∗2α,3→1 − Ĝ∗2α,3→2

(3.70)

Accordingly, the scaled emitted transverse field is rep-
resented by the following ratio, and we denote that ratio by
κemitted,⊥:

κemitted,⊥ =
G∗emitted,⊥
G∗mc

(3.71)

In order to evaluate the field, we apply Eq. (3.68):

κemitted,⊥ = 0.085 736 162 (3.72)
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3.10.1 Gravity and signs

The QST in the triple are emitted or absorbed (Carmesin,
2021a, Sect. 9.4). The flow of the QST of dark energy causes
an additional volume. Thereby, that volume forms a curvature,
and that curvature causes gravity (Carmesin, 2021d, Chap. 1).
Hereby, the additionally formed volume and the resulting grav-
ity are not influenced by the direction of the flowing QST. We
remind that this can be understood either by the quadrupole
symmetry of QST or by the fact that the QST of dark energy
propagate in an isotropic manner and without canceling each
other, see e. g. Carmesin (2021d). Consequently, the signs of
the emission (see Eq. 3.70) do not influence the gravitational
interaction of the triple.

Proposition 7 Transverse emitted field

(1) In a triple of QST with nj ∈ {1, 2, 3}, there occur forced
oscillations. These forced oscillations emit transverse QST with
the following field:

G∗emitted,⊥ =√
Ĝ∗2α,1→2 + Ĝ∗2α,1→3 + Ĝ∗2α,2→1 + Ĝ∗2α,2→3 − Ĝ∗2α,3→1 − Ĝ∗2α,3→2

(3.73)

(2) Accordingly, the scaled emitted transverse field is as follows:

κemitted,⊥ =
G∗emitted,⊥
G∗mc

(3.74)

(3) In the present case, we do not apply any corrections, and we
obtain the following value of the scaled emitted transverse field:

κemitted,⊥ = 0.085 736 162 without corrections (3.75)
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3.11 Interaction caused by G∗emitted,⊥

In this section, we analyze the interaction caused by the trans-
verse emitted field G∗emitted,⊥. For it, we transform the elemen-
tary charge to the Planck units.

3.11.1 Elementary charge in Planck units

In this section, we transform the elementary charge e to Planck
units. A charge q in SI units2 is transformed to a charge q̃ in
Planck units by multiplication by the factor 1√

4π·ε0·~·c
, see table

(8.3):

q̃ = q · 1√
4π · ε0 · ~ · c

(3.76)

In order to provide a value for comparisons, we apply the ob-
served value of the elementary charge (Tanabashi et al., 2018,
Table 1.1):

eobs = 1.602 176 6208(98) · 10−19 C (3.77)

In terms of Planck units, the above charge is as follows:

ẽobs = 0.085 424 5431(6) (3.78)

3.11.2 Comparison of κemitted,⊥ with elementary charge

In this section, we compare the scaled emitted transverse charge
κemitted,⊥ (PROP 7(3)) with the elementary charge ẽobs. Both
quantities are essentially equal. The relative difference is as
follows:

∆κemitted,⊥,ẽobs =
κemitted,⊥ − ẽobs

ẽobs
= 0.36% (3.79)

This finding indicates that κemitted,⊥ is the amount of the electric
charge ẽobs. In order to obtain a further confirmation of that
result, we analyze the corresponding field in Planck units:

2Hereby, the charge q should be distinguished from the integration variable used above.



3.11. INTERACTION CAUSED BY G∗EMITTED,⊥ 63

3.11.3 Gravitational field G̃∗mc

In this section, we derive the gravitational field G̃∗mc
of the con-

sidered triple of QST, in terms of Planck units. The gravita-
tional field G̃∗mc

as a function of the distance r̃ is as follows, see
table (8.3):

G̃∗mc
=
m̃c

r̃2
(3.80)

Scaled common mass m̃c,near: If a distant observer measures the
common mass m̃c,distant, than the result is usually smaller than
the value measured by a near observer m̃c,near. This result is
derived in section (4.6). The scaled common mass m̃c,near is
equal to one, see section (4.6):

m̃c,near = 1 (3.81)

Correspondingly, m̃c,near is an important invariant. Accord-
ingly, m̃c,near is analyzed within the chapter about symmetries
and invariants (4) in section (4.6). We emphasize here that
there is no cyclic argument, the topic m̃c,near merely fits better
to the chapter (4) than to the present chapter.

Application of m̃c,near: The emitted transverse field G̃∗mc
is gen-

erated at the triple. So it is caused by the near mass m̃c,near.
Thus we derive the following emitted transverse field:

G̃∗mc
=
m̃c,near

r̃2
=

1

r̃2
(3.82)

3.11.4 Emitted transverse field G̃∗emitted,⊥

In this section, we derive the emitted transverse field G̃∗emitted,⊥,
in terms of Planck units. For it, we apply Eq. (3.74):

κemitted,⊥ =
G∗emitted,⊥
G∗mc

(3.83)
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We expand the fraction by the factor that transforms G∗mc
to

the corresponding term in Planck units G̃∗mc
:

κemitted,⊥ =
G̃∗emitted,⊥

G̃∗mc

(3.84)

We solve for G̃∗emitted,⊥:

G̃∗emitted,⊥ = κemitted,⊥ · G̃∗mc
(3.85)

In order to derive the emitted transverse field G̃∗emitted,⊥ as a
function of the distance r̃, we apply Eq. (3.82) to the above
equation:

G̃∗emitted,⊥ = κemitted,⊥ ·
1

r̃2
(3.86)

3.11.5 Electric field Ẽ in Planck units

In this section, we summarize the electric field Ẽ of an elemen-
tary charge ẽobs, in terms of Planck units, see table (8.3). In
Planck units, an observed elementary charge ẽobs emits an ob-
served electric fieldẼ as a function of the distance r̃ as follows:

Ẽ =
ẽobs
r̃2

(3.87)

3.11.6 Comparison of the fields G̃∗emitted,⊥ and Ẽ∗

In this section, we compare the scaled emitted transverse field
G̃∗emitted,⊥, see Eq. (3.86),

G̃∗emitted,⊥ = κemitted,⊥ ·
1

r̃2
, (3.88)

with the electric field Ẽ , see Eq. (3.87):

Ẽ =
ẽobs
r̃2

(3.89)
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For it we form the ratio:

Ẽ

G̃∗emitted,⊥
= 1.0036 (3.90)

We realize that both fields are essentially equal, whereby the
relative difference is caused by the relative difference between
the observed electric charge ẽobs and the scaled emitted trans-
verse field κemitted,⊥, and it amounts to 0.36 %:

∆ ˜
E ,G̃∗emitted,⊥

=
G̃∗emitted,⊥ − Ẽ

Ẽ
= 0.36% (3.91)

The above relative difference decreases to 5.4 · 10−8, when si-
multaneously emitted transverse as well as screening and QED
corrections QST are analyzed, see chapter (6).

Theorem 1 Elementary charge: emission of single QST

In a triple of QST with nj ∈ {1, 2, 3}, there occur forced oscil-
lations. These forced oscillations emit QST with a scaled trans-
verse field κemitted,⊥. At an emission of single QST, the scaled
emitted transverse field κemitted,⊥ has the following properties:

(1) The amount κemitted,⊥ is essentially equal to the scaled ele-
mentary charge:

κemitted,⊥ = ẽobs · (1 + 0.36%) (3.92)

The remaining difference is below a corresponding error of mea-
surement, when corrections are applied, see Chap. (6).

(2) The emitted transverse field G̃∗emitted,⊥ is essentially equal to

the electric field Ẽ of an elementary charge:

G̃∗emitted,⊥ =
κemitted,⊥

r̃2
=
ẽobs
r̃2
· (1 + 0.36%) = Ẽ · (1 + 0.36%)

(3.93)
The remaining difference is below a corresponding error of mea-
surement, when corrections are applied, see Chap. (6).
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(3) As a consequence, the elementary charge as well as the elec-
tric field are explained by quantum gravity. Consequently, the
electric interaction is explained by quantum gravity.

3.11.7 Derivation in SI-units

In this section, we derive the result of THM (1) in the framework
of SI units, as some readers might prefer these units.

For it, we test whether G∗emitted,⊥ represents the electric field

Ẽ of a particle with one elementary charge e.

In particular, we analyze the Coulomb force or the corre-
sponding electric field Ẽ . The respective coupling constant
is 1

4π·ε0 . The gravitational coupling constant G is also named
Newtonian coupling constant GN (Tanabashi et al., 2018, Table
1.1), so that it is distinguished from other coupling constants.
Similarly, we denote the coupling constant 1

4π·ε0 by Coulomb
coupling constant GC :

GC =
1

4π · ε0
(3.94)

First, we remind the form of the electromagnetic field of a
charge e at a distance r:

Ẽ = GC ·
e

r2
(3.95)

Secondly, we test the following hypothesis:

hypothesis : Ẽ =

√
GC ·G∗emitted,⊥√

GN · m̃c

with m̃c = 1 (3.96)

Hereby, the condition m̃c = 1 is derived below, see section (4.6).
Thirdly, we insert Eqs. (3.95) and (3.71):

hypothesis : GC ·
e

r2
=

√
GC ·G∗mc

· κemitted,⊥√
GN · m̃c

with m̃c = 1

(3.97)
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Fourthly, we insert Eq. (3.57):

hypothesis : GC ·
e

r2
=
mc ·GN

r2
·
√
GC · κemitted,⊥√

GNm̃c

with m̃c = 1

(3.98)
Fifthly, we cancel

√
GN , and we multiply by r2/

√
GC :

hypothesis :
√
GC · e = mc ·

√
GN · κemitted,⊥

m̃c
with m̃c = 1

(3.99)
Next, we apply the definition mc = MP · m̃c, see tab. (8.3):

hypothesis :
√
GC · e = MP ·

√
GN · κemitted,⊥ with m̃c = 1

(3.100)
Seventhly, we apply the square, and we divide by ~ · c:

hypothesis :
GC · e2

~ · c
= M 2

P ·
GN

~ · c
· κ2

emitted,⊥ with m̃c = 1

(3.101)
In the above Eq., we identify the fraction at the left hand side
by α, see (Tanabashi et al., 2018, Table 1.1),

α =
GC · e2

~ · c
(3.102)

and we identify the fraction at the right hand side by 1/M2
P , see

table (8.3). So the square κ2
emitted,⊥ represents the theoretical

value αtheo, provided by the new theory of quantum gravity:

hypothesis : α = κ2
emitted,⊥ = αtheo with m̃c = 1 (3.103)

In order to evaluate αtheo, we apply Eq. (3.72):

αtheo = κ2
emitted,⊥ = 7.350 689 541 · 10−3 (3.104)

For comparison, we use the measured value of the fine-structure
constant (Tanabashi et al., 2018, Table 1.1):

αobs = 7.297 352 5664(17) · 10−3 (3.105)

The relative difference is as follows:

∆α =
κ2
emitted,⊥ − αobs

αobs
= 0.73% without corrections (3.106)
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Relatively precise confirmation of hypothesis: The hypothesis is
in relatively precise accordance with observation. So the hy-
pothesis is confirmed in a relatively precise manner.

Screening: The difference is already quite small, though we did
not yet apply the phenomenon of screening of the elementary
charge. Accordingly, in this chapter, we derive the value of the
bare elementary charge ebare, see Landau and Lifschitz (1982),
Greiner and Reinhardt (1995).

Bare elementary charge: In order to derive the bare elementary
charge, we solve Eq. (3.102) for e:

e =

√
α · ~ · c
GC

(3.107)

The bare elementary charge is the value without screening. So
it is derived by using the above value αtheo: Thus we derive:

ebare =

√
αtheo · ~ · c

GC
(3.108)

The evaluation provides the result:

ebare = 1.608 021 197 · 10−19 C (3.109)

The observed value of the screened elementary charge is shown
next (Tanabashi et al., 2018, Table 1.1):

eobs = 1.602 176 6208(98) · 10−19 C (3.110)

The relative difference is as follows:

∆screening =
ebare − eobs

eobs
= 0.36% without corrections

(3.111)
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3.11.8 Interpretation

The new theory of quantum gravity (Carmesin, 2021d, Chap. 1-
6) provides a mechanism for the formation of masses of charged
elementary particles (Carmesin, 2021a, Chap. 7, 9). Moreover,
our derivation in this chapter shows, how these elementary par-
ticles form electric charge and electric interactions. The relative
difference between the bare elementary charge and the observed
elementary charge is relatively small, namely 0.36 %. Screening
and the simultaneous emission of QST are elaborated in terms
of corrections in chapter (6), and these provide relative differ-
ences between theory and observation at the 10−8 scale. These
relatively small deviations between theory and observation are
interpreted as a clear evidence for the present theory.

So the same theory of quantum gravity explains the H0-
tension (Fig. 2.14) as well as the electric charge in a very precise
manner. Thus quantum gravity unifies the phenomena of grav-
ity and electricity in a fully elementary and beautiful manner.

Derived charge: Using the present theory, we explain what the
charge is. For it we use Eq. (3.108), and we insert Eq. (3.103):

ebare = κemitted,⊥ ·
√

~ · c
GC

(3.112)

In the Gaussian system of units, the coupling GC takes the value
one (Jackson, 1975, p. 818). In that system, the ratio κemitted,⊥
represents a scaled version of the electric charge:

ebare = κemitted,⊥ ·
√
~ · c in Gaussian units (3.113)

In Planck units (tab. 8.3), the scaled electric charge is as follows
(Eq. 3.71):

ẽbare =
ebare√
~ · c/GC

=
ebare
qP

= κemitted,⊥ =
G∗emitted,⊥
G∗mc

(3.114)
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In Planck units, the bare charge is the ratio of the field G∗emitted,⊥
caused by the internal dynamics of the three QST and the local
gravitational field G∗mc

of the three QST.

Feynman’s view (Feynman, 1985, p. 129) realized that the fine-
structure constant essentially describes the amount of electro-
magnetic activity exhibited by the elementary charge: ’There
is a most profound and beautiful question associated with the
observed coupling constant, ecc

3 − the amplitude for a real elec-
tron to emit or absorb a real photon. It is a simple number that
has been experimentally determined to be close to 0.08542455.
(My physicist friends won’t recognize this number, because they
like to remember it as the inverse of its square: about 137.03597
with an uncertainty of about 2 in the last decimal place. It has
been a mystery ever since it was discovered more than fifty years
ago, and all good theoretical physicists put this number up on
their wall and worry about it.)

Immediately you would like to know where this number for a
coupling comes from: is it related to π or perhaps to the base
of natural logarithms? Nobody knows. It’s one of the greatest
damn mysteries of physics: a magic number that comes to us
with no understanding by humans. You might say the ’hand of
God’ wrote that number, and ’we don’t know how He pushed His
pencil.’ We know what kind of a dance to do experimentally to
measure this number very accurately, but we don’t know what
kind of dance to do on the computer to make this number come
out − without putting it in secretly!’.

Indeed, I present a program that can run on the computer to
make this number come out − without putting it in secretly!, see
section (8.6). Moreover, I provide two corrections in chapter (6),
one correction takes care of several QST emitted simultaneously,
the other correction takes care of screening or corrections of
quantum electrodynamics, QED.

3I added the subscript cc in order to mark a difference to the elementary charge e.
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I think that Feynman’s view shows precisely the essential
relevance of the coupling constant α and of its explanation. In
particular, the observed coupling constant, ecc, suggested by
Feynman, is now explained by the ratio κemitted,⊥ of the emitted
field G∗emitted,⊥ and the gravitational field G∗mc

.
Moreover, Feynman points out at the next page in his book,

that the number α alone is not yet very useful. Indeed, our
present theory provides many insights, whereby the number α
derived by our theory serves as a test of our theory. In particu-
lar, we elaborated a physical theory that provides the formation
of electric charge, the propagation of electric interaction char-
acterized by α, the corresponding symmetries, see next chapter
and the formation of electrodynamics, see chapter (5). Alto-
gether, our theory is useful and provides many insights.

Theorem 2 Elementary charge: emission of single QST
in SI units

In a triple of QST with nj ∈ {1, 2, 3}, there occur forced os-
cillations. These forced oscillations emit QST with a scaled
field κemitted,⊥. At an emission of single QST, the scaled field
κemitted,⊥ has the following properties (simultaneously emitted
QST are described by THM (3):

(1) The emitted QST mediate an interaction with the following
fine-structure constant:

αtheo = κ2
emitted,⊥ = 7.350 689 541 · 10−3 (3.115)

The relative difference between the theoretical value and the ob-
served value of the fine-structure constant

αobs = 7.297 352 5664(17) · 10−3 (3.116)

is as shown next:

∆α =
κ2
emitted,⊥ − αobs

αobs
= 0.73% without corrections (3.117)
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(2) The QST emitted by the triple of QST mediate an interac-
tion with the observed fine-structure constant. Correspondingly,
the QST emitted by the triple of QST provide the electric field
and mediate the electric interaction.

(3) The triple of QST represents the following bare elementary
charge:

ebare =

√
αtheo · ~ · c

GC
with GC =

1

4πε0
(3.118)

The evaluation provides the result:

ebare = 1.608 021 197 · 10−19 C (3.119)

The observed value of the screened elementary charge (Tan-
abashi et al., 2018, Table 1.1)

eobs = 1.602 176 6208(98) · 10−19 C (3.120)

provides the relative difference as follows:

∆screening =
ebare − eobs

eobs
= 0.36% without corrections

(3.121)



Chapter 4

Symmetries of Electric Charge

In this chapter, we analyze the symmetries inherent to the
electric charge formed by QST. These theoretical symmetries
are identical to the observed symmetries, see Tanabashi et al.
(2018), and provide additional evidence for the new theory of
quantum gravity.

4.1 1
r2 law

The electric field is a mesoscopic description of the radial flow
of quanta, see Fig. (3.2) and Eqs. (3.95, 3.96). So the abso-
lute value of the electric field E is proportional 1

r2 . thus the
corresponding ratio is another invariant:

E · r2 = GC · q = Invariant (4.1)

4.2 Time inversion T

A reversion of the time evolution is described by the time re-
versal operator, see Tanabashi et al. (2018):

T ·∆t = −∆t (4.2)

The charge formed by the QST emits quanta that constitute the
electric field ~E , see Eqs. (3.95, 3.96). Thereby, the direction of

73
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R̃S = 2m̃sum

m̃sum

ã

m̃j

Figure 4.1: QST with dynamic mass m̃j is falling towards the
other two QST with the dynamic mass m̃sum.

the flow of these quanta determines the sign of the interaction
(Carmesin, 2021a, Sect. 9.4). So the sign of the electric field is
reversed by T :

T · ~E = − ~E (4.3)

4.3 Formation of negative charge q = −e

The fields generated by the three QST forming a charge can
be inverted (Carmesin, 2021a, THM 9 and Sect. 9.4). As a
consequence, for each charge q that the three QST form, there
is another triple of QST that forms the charge q′ = −q. That
relation is usually expressed by the charge conjugation operator
C, see Tanabashi et al. (2018)

C · q = −q (4.4)

4.4 CT invariance

In this section, we show that the application of C and T does
not change the relation between the electric field ~E and the
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charge q (Eq. 3.95):

~E = GC ·
q

r2
· ~r
r

(4.5)

We show this invariance by application of C · T to the above
Eq.:

C · T · ~E = C · T ·GC ·
q

r2
· ~r
r

(4.6)

We apply T · ~E = − ~E and C · q = −q:

− ~E = GC ·
−q
r2
· ~r
r

(4.7)

We multiply by −1:

~E = GC ·
q

r2
· ~r
r

(4.8)

This Eq. is the same as Eq. (4.5). So the relation between
charge and field is invariant with respect to a C ·T transforma-
tion.

4.5 Isotropy of the field

The electric field is a mesoscopic description of the radial flow
of quanta, see Fig. (3.2) and Eqs. (3.95, 3.96). So the field is
invariant with respect to rotations with the center at the charge.

4.6 Invariant mass m̃c = 1

In this section, we analyze the formation of the dynamical mass
m̃c. For it, we summarize the conditions of that binding first.

4.6.1 Conditions of the process of binding

In this section, we summarize the conditions of the process of
the binding.
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Pair of QST: We analyze the binding of three QST in two steps.
Firstly, two dynamic masses m̃n1 and m̃n2 bind to a dynamic
mass m̃n3. Then the pair with the dynamic mass m̃n3 and the
third QST with a dynamic mass m̃n4 bind. So it is sufficient to
analyze the binding of two dynamic masses.

Accordingly, we analyze the binding of dynamic masses m̃1

and m̃2, bound to a dynamic mass m̃3.

Relativistic QST: The QST are relativistic. So the extension
ãj of a dynamic mass m̃j is as follows:

ãj =
1

2 · m̃j
=

1

2 · Ẽj

for j ∈ {1, 2, 3} (4.9)

Fact of binding: We showed already that the three QST bind,
e. g. according to the waveguide mechanism, whenever the
perpendicular component of the momentum is sufficiently small,
see section 3.5.4. Accordingly, we use the fact of the binding,
in the following.

Energy measured by a distant observer: As the energy Ẽj,dist of
the three QST is in the GeV scale, for the case of a distant
observer, it is very small compared to the Planck scale:

Ẽj,dist <<
1

2
for j ∈ {1, 2, 3} (4.10)

Minimal extension: The extension ãj cannot be smaller than a
Planck length:

ãj ≥ 1 for j ∈ {1, 2, 3} (4.11)

Maximal energy: The scaled energy of a QST can at most be
equal to one half, as the QST are relativistic, see Eqs. (4.9,
4.11):

Ẽj ≤
1

2
for j ∈ {1, 2, 3} (4.12)
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4.6.2 Process of falling towards another

During the process of the binding of two QST, they fall towards
another. In particular, we consider the falling of Ẽ1 in the
gravitational field or environment of Ẽ2.

Thereby the gravitational energy of Ẽ1 decreases by a factor
ε < 1 (Carmesin, 2021d, PROP 4). According to the law of
energy conservation, that decrease of energy is compensated by
an increase of the energy Ẽ1 by the inverse factor 1/ε > 1.

At the beginning, the initial energies Ẽj,ini of the QST are
the values that a distant observer can measure:

Ẽj,ini = Ẽj,dist for j ∈ {1, 2} (4.13)

After the falling of Ẽ1 in the field of Ẽ2, until a distance R is
achieved, the factor ε < 1 takes the following value (Carmesin,
2021d, PROP 4):

ε =
√

1−RS/R (4.14)

Hereby, RS is the Schwarzschild radius of Ẽ2. We expand the
fraction in the above equation by LP :

ε =

√
1− R̃S/R̃ (4.15)

By definition, the Schwarzschild radius is as follows:

RS =
2Gm

c2
or R̃S = 2Ẽ2 (4.16)

We apply this relation and Eq. (4.9) to Eq. (4.15):

ε =

√
1− 2Ẽ2 · 2Ẽ1 (4.17)

So the energy Ẽ1 is as follows:

Ẽ1 =
Ẽ1,dist

ε
=

Ẽ1,dist√
1− 2Ẽ2 · 2Ẽ1

(4.18)
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Own system of the binary system: We use the own system of the
binary system of the two relativistic objects with the energies
Ẽ1 and Ẽ2. Thus the sum of the momenta is zero. So the
absolute values of the momenta |p̃1| and |p̃2| are equal. As these
QST are relativistic, the corresponding energies and dynamical
masses are equal:

|p̃1| = Ẽ1 = Ẽ2 = |p̃2| (4.19)

Energy Ẽ1 in the center of dynamic mass system: We apply Eq.
(4.19) to Eq. (4.18):

Ẽ1 =
Ẽ1,dist√
1− 4Ẽ2

1

(4.20)

We divide the above equation by Ẽ1,dist:

Ẽ1

Ẽ1,dist

=
1√

1− 4Ẽ2
1

(4.21)

Graphical solution: In order to solve the above equation, we
apply a graphical solution first. For it, we introduce two func-
tions:

f(Ẽ1) =
Ẽ1

Ẽ1,dist

(4.22)

g(Ẽ1) =
1√

1− 4Ẽ2
1

(4.23)

We represent these functions graphically in Fig. (4.2). The
figure shows that the physically relevant solution is as follows:

Ẽ1 ≈ 1/2 with Ẽ1 < 1/2 (4.24)
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0 0.1 0.2 0.3 0.4 0.5 0.6

0

5

10

Ẽ1
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Figure 4.2: Intersections of functions f(Ẽ1) (solid line) and g(Ẽ1)
(dashed). g(Ẽ1) exhibits a singularity at Ẽ1 = 1/2. So the
physically relevant intersection is at Ẽ1 ≈ 1/2, with Ẽ1 < 1/2.

derived approximate solution: We apply Eq. (4.10) to the equa-
tion (4.21). So we derive

1 <<
Ẽ1

Ẽ1,dist

=
1√

1− 4Ẽ2
1

, (4.25)

or

1 <<
1√

1− 4Ẽ2
1

(4.26)

As the fraction in the above equation is very large compared to
one, the denominator in that fraction is approximately zero:

0 ≈ 1− 4Ẽ2
1 (4.27)

We solve for the energy:

Ẽ1 ≈
1

2
(4.28)
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Sum of energies Ẽ1 + Ẽ1: The sum of the scaled energies is ap-
proximately one:

Ẽsum = Ẽ1 + Ẽ2 ≈ 1 (4.29)

The mass Ẽ2 can represent two bound QST. So the sum Ẽsum

can represent two or three bound QST. Thus the triple has a
scaled common mass of approximately one:

m̃c ≈ 1 (4.30)

Precision of the result: The approximation in Eq. (4.10) is very
precise, as the typical masses of charged particles are as follows:

mj,dist ≤ 200GeV/c2 = 3.57 · 10−25 kg (4.31)

For comparison, the Planck mass has the following value:

mP = 2.176 · 10−8 kg (4.32)

So Ẽj,dist is bound from above as follows:

Ẽj,dist = m̃j,dist =
mj,dist

mP
≤ 1.64 · 10−17 (4.33)

So the expected relative error of m̃c is smaller than twice the
root of the above bound:

∆rel,m̃c
≤ 2
√

1.64 · 10−17 = 8.1 · 10−9 (4.34)

So we derive:

m̃c = 1 + x with x ∈ [−10−8, 10−8] (4.35)

4.7 Universality of the elementary charge

The mass of all particles with an electric charge is caused by the
mass of the Higgs particle by the Higgs mechanism (Tanabashi
et al., 2018, Sect. 11) or (Carmesin, 2021a, Sect. 9.3). So the
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electric charge is formed by the three QST corresponding to
the Higgs particle (Carmesin, 2021a, Chap. 9), as worked out
in chapter (3). As a consequence, the elementary charge is the
same in all charged particles.

q̃elementary = ẽ for all particles (4.36)

4.8 Conservation of charge

If the charge is conserved, the QST of these charge emit as many
QST as they absorb. So there is no net production of five dimen-
sional space. However, if the charge would not be conserved,
then there would be a net production of five dimensional space.
This is not stable after the dimensional transition to a dimen-
sion below five in the course of cosmic unfolding. Hence the
charge is conserved since the dimension decreased below five.
As a consequence, the continuity equation of electrodynamics
holds (Landau and Lifschitz, 1971, § 29).

4.9 Superposition of fields

The fields in electrodynamics are a mesoscopic description of
the QST emitted by a charge. These QST interact by gravity
only, as they are not charged. So the interaction becomes es-
sential only in the vicinity of the Planck scale. Thus the fields
superimpose linearly, as long as the density is small compared
to the Planck density (see table 8.3). So the principle of linear
superposition is a very good approximation for the case of elec-
tromagnetic fields. As a consequence, the Maxwell equations
can be derived, see chapter (5).

4.10 Energy conservation

The QST that are emitted from masses in the form of ZPOs
are the basis of the expansion of the universe, see Carmesin
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(2021d). Moreover, the ZPOs do not violate the principle of
energy conservation, see Carmesin (2020b), Carmesin (2021d).
So the formation of the electric field by QST does not violate
the principle of conservation of energy.

4.11 Particles with zero charge

Elementary particles, the mass of which is caused by the Higgs
particle, can exhibit zero charge. This is usually achieved by
the cancellation of positive and negative charges. An example
is the neutron, here the charges of one down quark and two up
quarks cancel.

In principle, the charge zero can also be achieved, if the
forced oscillations are hindered by a huge distance of the QST in
the triple. For instance, the QST could propagate fully parallel,
so that no transverse modes are excited at all.

The masses of the neutrinos are not caused by the Higgs
particle, so the present mechanism does not apply, for details
see Carmesin (2021a).



Chapter 5

From QST to Electrodynamics

In this chapter, we show how to derive the theory of classical
electrodynamics, see e. g. Maxwell (1865), (Tanabashi et al.,
2018, Sect. 7), Landau and Lifschitz (1971), and the theory of
quantum electrodynamics, QED, see e. g. Landau and Lif-
schitz (1982), Feynman (1985), Greiner and Reinhardt (1995),
Schwartz (2014), from the elementary charge, which is based on
the quanta of spacetime, QST. Hereby, we use Gaussian coor-
dinates in this chapter (Jackson, 1975, p. 818).

5.1 Basic questions

In this chapter we ask: What ingredients are essential for theo-
ries of electrodynamics? What essential ingredients of theories
of electrodynamics are provided by the new theory of quantum
gravity?

In order to derive the answers to these questions, we present
and analyze derivations of these theories. In particular, we de-
rive the theory of classical electrodynamics, and we show how
to derive the theory of quantum electrodynamics.

5.2 From QST to classical Electrodynamics

The QST are the most elementary quanta, as they range from
the Planck scale to the macroscopic scale, see e. g. Figs. (1.1,

83
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2.12). At the mesoscopic level, these quanta form the elemen-

tary charge and the electric field ~E , see chapter (3). Accord-
ingly, the classical theory of electrodynamics can be derived on
the basis of the QST. This can be achieved as follows (hereby,
we use the Gaussian system of units in this section, for a con-
version see e. g. (Jackson, 1975, p. 818)):

5.2.1 Classical action of a particle with a mass m

In this section, we develop the action Sm,classical of a particle
with a mass m in classical mechanics:

In classical mechanics, the straight path from a point a to a
point b is the path at which the integral

Sm,classical =

∫ b

a

m · v
2

2
ds (5.1)

is minimal, while that integral is larger for all other paths from
a to b. Accordingly, that integral provides a possible action,
so that the lowest action corresponds to the physical path, ac-
cording to the principle of least action. The constant m/2
in that integral is chosen so that the usual kinetic energy is
derived from Sm (Landau and Lifschitz, 1976, § 4).

5.2.2 Action of a particle with a mass m in SRT

In this section, we develop the action Sm of a particle with
a mass m in the theory of special relativity, SRT: For it, we
express the squared line element ds2 in the own frame of the
particle:

ds2 = c2dt2own − dx2
own − dy2

own − dz2
own = c2dt2own (5.2)

Hereby, we used the fact that the elements dr2
own,j are zero in

the own frame of the particle. Similarly, we express the squared
line element ds2 in the observer’s frame:

ds2 = c2dt2obs − dx2
obs − dy2

obs − dz2
obs (5.3)
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Moreover, we remind the usual transformation, see e. g. Ein-
stein (1905), Carmesin (2020b) or Carmesin (1996).

dtown = dtobs ·
√

1− v2

c2
(5.4)

Using the above Eqs. (5.2, 5.3, 5.4), the action can be chosen
so that the classical action is obtained in the limit v/c to zero
(Landau and Lifschitz, 1971, § 8):

Sm =

∫ b

a

−m · c2 · dtown =

∫ b

a

−m · c · ds (5.5)

Limit v/c to 0: At leading order in v/c, we derive:

dtown=̂dtobs ·
(

1− 1

2

v2

c2

)
(5.6)

We apply that result to the action in Eq. (5.5):

Sm=̂

(∫ b

a

−m · c2 +

∫ b

a

m

2
v2

)
(5.7)

As only derivations of the action are relevant for the DEQs or
the Lagrangian of the dynamics, we can omit the first integral
in the above equation, and so we obtain the classical action:

Sm=̂

∫ b

a

m

2
v2 = Sm,classical (5.8)

5.2.3 Action of a charged particle in a field

In this section, we develop the action Smf of a particle with a
charge q or elementary charge e in a field. In SRT, that field is
described by a four-potential Ai.

Moreover, in SRT, the action Smf describing the interaction
of the four-potential Ai with the events xi of the particle should
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be a corresponding Lorentz scalar. So the following form of the
action Smf arises (Landau and Lifschitz, 1971, Eq. 16.1):

Smf =

∫ b

a

−e
c
· Ai · dxi (5.9)

Hereby, we use the sum convention, and the constant c has been
included so that the usual Maxwell equations arise.

5.2.4 Derivation of the matter-free Maxwell equations

In this section, we derive the Maxwell equation treating induc-
tion and the Maxwell equation stating the absence of magnetic
monopoles.

Using the vector potential ~A and the potential Φ,

A0 = Φ and Ai = ~Ai for 1 ≤ i ≤ 3, (5.10)

the action Sm + Smf can be varied. Thereby the Langrangian

L = −mc2 ·
√

1− v2

c2
+
e

c
~A · ~v − e · Φ (5.11)

and the Hamiltonian can be derived (Landau and Lifschitz,
1971, Eq. 16.8):

H =

√
m2c4 + c2 ·

(
~p− e

c
~A
)2

+ e · Φ (5.12)

The above Lagrangian can be applied in order to derive the
electric force for the case of a static field

~Fel = e · ~E (5.13)

and the Lorentz force (Landau and Lifschitz, 1971, Eq. 17.6)

~FL =
e

c
· ~v × ~H (5.14)

d~p

dt
= e · ~E +

e

c
· ~v × ~H (5.15)
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Hereby, the curl of the vector potential ~A,

~H = curl ~A, (5.16)

is the magnetic field ~H ,

~E = −1

c

∂ ~A

∂t
− ∂Φ

∂~r
(5.17)

is the electric field, and ~v is the velocity of the particle.

Using the above Eq. for ~E , applying the curl operator and
inserting the above term for ~H yields the Maxwell equation
treating induction (Landau and Lifschitz, 1971, Eq. 26.1):

curl ~E = −1

c
· ∂

~H

∂t
(5.18)

If we apply the divergence to ~H and use the definition (Eq.
5.16), then we obtain the Maxwell equation stating the absence
of magnetic monopoles (Landau and Lifschitz, 1971, Eq. 26.2):

div ~H = 0 (5.19)

5.2.5 Conservation of charge

In order to derive the other two Maxwell equations, we intro-
duce the four-dimensional current vector (Landau and Lifschitz,
1971, Eq. 28.2)

ji = ρ · dx
i

dt
(5.20)

Hereby, ρ is the charge density.

An essential ingredient is the conservation of charge, in par-
ticular, it provides the continuity equation:

∂

∂t

∫
ρdV = 0 (5.21)
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5.2.6 Action of the field

In this S., we develop the action of the field tensor. Hereby,
that tensor is defined as follows (Landau and Lifschitz, 1971,
Eq. 26.5):

Fik =
∂Ak

∂xi
− ∂Ai

∂xk
(5.22)

Development of that action: The principle of linear superposi-
tion of the fields implies that the DEQ of the fields must be
linear, thus the action must be quadratic, and hence the action
is a quadratic Lorentz scalar, so it must have the following form
(Landau and Lifschitz, 1971, Eq. 27.4, 27.5):

Sf =
−1

16π

∫
Fik ·F ikdt·dxdydz =

1

8π

∫
( ~E2− ~H2)dt·dV (5.23)

5.2.7 Derivation of Maxwell equations with matter

Variation of the sum of the actions S = Sm+Smf +Sf (Landau
and Lifschitz, 1971, § 30) yields the Maxwell equation treating
the sources of the electric field

div ~E = 4πρ, (5.24)

and the Maxwell equation describing the generation of the mag-
netic field:

curl ~H =
1

c

∂ ~E

∂t
+

4π

c
·~j (5.25)

Altogether, these four Maxwell equations essentially constitute
the theory of classical electrodynamics, see e. g. Landau and
Lifschitz (1971), Jackson (1975).

5.2.8 Essential ingredients

In this section, we summarize the essential ingredients used in
the above derivation of classical electrodynamics.
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1. The elementary charge e has been used.

2. The conservation of charge has been applied.

3. The universality of the elementary charge e has been uti-
lized.

4. The linear superposition of fields has been used.

5. The mass of elementary particles has been applied.

6. The principle of least action provides a formalism in order
to develop DEQs from underlying symmetries.

7. SRT has been utilized, so that the invariance and univer-
sality of c is provided,

8. The action Sm has been developed, so that energy and
momentum are conserved, so that isotropy and transla-
tion invariance in space and time are provided, see Noether
(1918).

9. The action Sm,f has been developed, so that the invariance
and universality of c and e are provided, and so that SRT
and the conventions inherent to the Maxwell equations in
Gaussian units are obeyed.

10. The action Sf has been developed, so that the linear su-
perposition of fields and the SRT are provided.

Hereby, the above items (1) to (4) have been derived in this book
from the properties of the QST, see chapters (3, 4). Further-
more, the mass underlying elementary particles (item 5) has
been derived from QST, see Carmesin (2021a). Moreover, in
item (6), the SRT represents a mesoscopic description of space
and time, whereby the microscopic description is provided by
the QST, see Carmesin (2021d).
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The other items represent the method of the derivation of La-
grangians or DEQs from underlying symmetries, whereby the
additional symmetries are the isotropy of space and the trans-
lation invariance of space and time.

5.2.9 Essential result

The three QST forming a particle can generate an elementary
charge. The elementary charge gives rise to a magnetic field,
see e. g. Eqs. (5.11, 5.12, 5.16).

Altogether, there is a mechanism for the formation of electric
charges on the basis of quantum gravity, whereas there is no
such mechanism for the formation of magnetic monopoles on the
basis of quantum gravity. So there are no magnetic monopoles
formed by QST, instead, magnetism is formed as a consequence
of the electric charge formed by QST.

5.3 From QST to QED

The theory of classical electrodynamics has been quantized, and
thereby the theory of quantum electrodynamics, QED has been
developed.

In this section, we summarize properties of that theory, and
we compere these with the results of the present theory of the
electron.

5.3.1 Propagation

Basically, an elementary particle propagates according to its
wave equation (Landau and Lifschitz, 1982, Sect. II, III). More
generally, there occur interactions with other particles, includ-
ing the formation or annihilation of particles. These processes
are named scattering.
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5.3.2 Feynman diagrams

The scattering is described by Feynman diagrams (Landau and
Lifschitz, 1982, Sect. VI, VII). Hereby, the scattering is based
on the interaction, whereby the amplitude of that interaction is
usually proportional to the coupling constant e2

cc = α, see sec-
tion (3.11.8). An example is the scattering amplitude Mfi from
an initial state i to a final state f in the process of the scat-
tering of electrons, whereby Mfi is proportional to the coupling
constant e2

cc = α (Landau and Lifschitz, 1982, Eq. 73.11-73.17).

Hereby, ecc is the elementary charge observed at a large dis-
tance. We did already derive the bare charge ẽbare = κemitted,⊥,
see Eq. (3.114). Accordingly, our theory underlies the theory
of QED.

5.3.3 Perturbation theory

If an experiment is described, then an appropriate Feynman di-
agram can be developed. However, during the process described
by the Feynman diagram, additional elementary particles can
form and annihilate. Correspondingly, the Feynman diagram
becomes more and more complicated. As all these processes
might occur, there occurs an infinite sum of diagrams and re-
spective processes.

So the question arises, whether that sum converges. Hereby,
each complication corresponds to an additional interaction, pro-
viding an additional factor e2

cc = α. thus the sum can only con-
verge, if that coupling constant e2

cc = α is sufficiently small. In
this manner, the QED works on the basis of a sufficiently small
coupling constant e2

cc = α. Thus the coupling constant e2
cc = α

derived here is again a basis of the QED.

Technically, it is most transparent to organize the Feynman
diagrams in powers of the coupling constant e2

cc = α. In this
manner, the QED additionally provides a perturbation theory
(Landau and Lifschitz, 1982, Sect. VIII).
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5.3.4 From quantum gravity to QED

In this section, we compare QED with quantum gravity.

1. QED can be derived from quantum gravity, as the ele-
mentary charge can be derived and explained by quantum
gravity.

2. QED uses a mesoscopic or macroscopic concept of space-
time. Both can be derived and explained by quantum grav-
ity.

3. QED uses charge and mass as a basis. The mass can be
derived and explained by quantum gravity, see Carmesin
(2021a).

4. While quantum gravity ranges from the Planck length LP
towards the light horizon Rlh, the concept of the Planck
scale cannot be derived within QED, as gravity and the
gravitational constant are essential in order to derive and
explain the Planck scale.

Altogether, QED is a mesoscopic theory that can be derived
from quantum gravity as follows: Firstly, we derive the elemen-
tary charge and the electromagnetic interaction from quantum
gravity. Thereby, the electromagnetic interaction represents a
mesoscopic theory.

Secondly, we quantize that mesoscopic electromagnetic inter-
action in order to derive quantum electrodynamics, at a meso-
scopic level.



Chapter 6

Corrections

In the vicinity of a particle emitting an electromagnetic field,
the energy of that field is high. As a consequence, particles
can form and annihilate after a short time, in general, particles
can form (Landau and Lifschitz, 1982, § 1). Such effects can
be considered in terms of corrections, see e. g. (Landau and
Lifschitz, 1982, § 118), (Greiner and Reinhardt, 1995, p. 370),
(Wygas, 2013, p. 17-20). Moreover, several forced oscillations
may emit quanta simultaneously. This effect can be treated in
terms of a correction as well. Of course, we could have treated
this effect already above. However, we preferred the separation
of effects in order to achieve additional transparency concerning
the various contributions to the elementary charge.

In this chapter, we derive the above described corrections
that are essential for the formation of electric charge and elec-
tromagnetic interaction from the quanta of spacetime, QST.

6.1 Simultaneously emitted QST

In general, all emitted QST can occur simultaneously inside
the triple of QST. In order to analyze that case, we apply Eq.
(3.56):

Ĝ∗α,j→i =
G∗mc

|n̄2
i − n̄2

j |
(6.1)

93
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Field of all QST: In the triple of QST, the field G∗mc
of mc is

superimposed by the emitted field G∗emitted,⊥. Thereby, both
fields G∗mc

and G∗emitted,⊥ are emitted in an isotropic manner.
Thus the fields are added directly:

Ĝ∗sum = G∗mc
+G∗emitted,⊥ (6.2)

Emission of a single QST: We remind the field of an emitted
QST that is emitted in the absence of other emitted QST:

Ĝ∗α,j→i,single = G∗mc
· 1

|n̄2
i − n̄2

j |
(6.3)

Correspondingly, we obtain, see table (8.4):

κα,j→i,single =
Ĝ∗α,j→i,single

G∗mc

=
1

|n̄2
i − n̄2

j |
(6.4)

Energy density of single emitted QST: In the process of emission
of quanta, the energy density and the probability densities are
the essential quantities. Accordingly, we derive the energy den-
sity u of the emitted QST. For it we square the above equation,
and we divide by 8π ·G:

ûα,j→i,single =
Ĝ∗2α,j→i,single

8π ·G
=

G∗2mc

8π ·G
· 1

|n̄2
i − n̄2

j |2
(6.5)

Energy density of emitted QST: In general, several QST are
emitted simultaneously. As a consequence, the field Ĝ∗mc

is re-

placed by the sum of fields Ĝ∗sum, in the above equation. So
the right hand side of the above equation is replaced by the
following term:

G∗2sum
8π ·G

· 1

|n̄2
i − n̄2

j |2
(6.6)

However, an emitted QST does not emit itself. Accordingly, the
energy density of an emitted QST is subtracted from the above
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energy density G∗2sum
8π·G :

ûα,j→i =
Ĝ∗2α,j→i
8π ·G

=
G∗2sum − Ĝ∗2α,j→i,single

8π ·G
· 1

|n̄2
i − n̄2

j |2
(6.7)

In order to simplify, we multiply the above equation by 8π ·G,
and we apply the root:

Ĝ∗α,j→i =
√
G∗2sum − Ĝ∗2α,j→i,single ·

1

|n̄2
i − n̄2

j |
(6.8)

We insert Eq. (6.2):

Ĝ∗α,j→i =
√

(G∗mc
+G∗emitted,⊥)2 − Ĝ∗2α,j→i,single ·

1

|n̄2
i − n̄2

j |
(6.9)

In order to simplify that expression, we factorize G∗mc
:

Ĝ∗α,j→i = G∗mc
· κsim.
|n̄2
i − n̄2

j |

with simultaneously emitted QST

(6.10)

Hereby, κsim. abbreviates the following root, whereby the sub-
script sim. represents simultaneously:

κsim. =
√

(1 + κemitted,⊥)2 − κ2
α,j→i,single (6.11)

6.2 Process of emission with κsim.

The process of emission is similar to that analyzed in section
(3.9). Accordingly, the field G∗mc

is reduced as a consequence of
the emission as follows.

When a transverse QST with a field Ĝ∗α,j→i is emitted, and
when a fraction q ∈ [0; 1] of that QST has already been emitted,
then the field G∗mc

is reduced by Ĝ∗α,j→i ·q. So the following field
remains:

G∗mc,rest
= G∗mc

− Ĝ∗α,j→i · q (6.12)
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In this case, the remaining field causes the emitted field. Ac-
cordingly, Eq. (3.56) is generalized as follows:

Ĝ∗α,j→i =
G∗mc,rest

|n̄2
i − n̄2

j |
(6.13)

Next, we apply the principle of equal amplitudes to Eq. (6.12):

G∗mc,rest
= G∗mc

− Ĝ∗α,j→i · q (6.14)

Here, we apply Eq. (6.10), whereby we use the fact that G∗mc

is reduced to G∗mc,rest
everywhere in the triple. Hereby, simul-

taneously emitted QST are described by Eq. (6.10):

G∗mc,rest
= G∗mc

−G∗mc,rest
· κsim.
|n̄2
i − n̄2

j |
· q (6.15)

We solve that equation:

G∗mc,rest
= G∗mc

· 1

1 + κsim.
|n̄2i−n̄2j |

· q
(6.16)

Next we derive the averaged value by integrating over all
values q ∈ [0, 1]:

〈G∗mrest
〉 =

∫ 1

0

G∗mc
· 1

1 + κsim.
|n̄2i−n̄2j |

· q
dq (6.17)

We evaluate that integral:

〈G∗mrest
〉 = G∗mc

·
|n̄2
i − n̄2

j |
κsim.

· ln

(
1 +

κsim.
|n̄2
i − n̄2

j |

)
(6.18)

Next, we apply the average to Eq. (6.19):

〈Ĝ∗α,j→i〉 =
〈G∗mc,rest

〉
|n̄2
i − n̄2

j |
(6.19)

In the above equation, we insert Eq. (6.18):

〈Ĝ∗α,j→i〉 = G∗mc
· 1

κsim.
· ln

(
1 +

κsim.
|n̄2
i − n̄2

j |

)
= Ĝ∗α,j→i (6.20)

Hereby, the average 〈Ĝ∗α,j→i〉 is also denoted by Ĝ∗α,j→i, for short.



6.2. PROCESS OF EMISSION WITH κSIM. 97

0 5 · 10−2 0.1

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

κemitted,⊥

κ
em

it
te
d
,⊥

Figure 6.1: Graphic solution of fixed point equation: The scaled
field κemitted,⊥ as a function of the κemitted,⊥, see Eq. (3.83,
dashed). The point of intersection of function in Eq. (3.83,
dashed) and the identical function (dotted) represents the fixed
point or the solution.

6.2.1 Iteration for κemitted,⊥

In this section, we determine κemitted,⊥ by a fixed point iteration.
In particular, we analyze the scaled emitted field κemitted,⊥ as
shown in PROP (7),

κemitted,⊥ =
G∗emitted,⊥
G∗mc

(κemitted,⊥) (6.21)

with

G∗emitted,⊥ =√
Ĝ∗2α,1→2 + Ĝ∗2α,1→3 + Ĝ∗2α,2→1 + Ĝ∗2α,2→3 − Ĝ∗2α,3→1 − Ĝ∗2α,3→2

(6.22)

as a function of κemitted,⊥. Hereby, the fields Ĝ∗α,j→i are pro-
vided by Eqs. (6.20, 6.11, 6.4). In a graphic solution, the fixed
point is the intersection of that function with the identical func-
tion, see Fig. (6.1). In the following, we derive the fixed point
numerically.
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For it, we introduce the following abbreviation:

κ1+⊥ = 1 + κemitted,⊥ (6.23)

Zeroth step: At the zeroth step, κ1+⊥ takes the following initial
value:

κ
(0)
1+⊥ = 1 (6.24)

Accordingly, the field takes the following value at the zeroth
iteration step:

G
∗(0)
emitted,⊥

G∗mc

= κ
(0)
emitted,⊥ = 0.085 741 142 500 (6.25)

First step: At the first iteration step, κ⊥ = 1 + κemitted,⊥ takes
the following value:

κ
(1)
1+⊥ = 1 + κ

(0)
emitted,⊥ (6.26)

Consequently, the field takes the following value at the first
iteration step:

G
∗(1)
emitted,⊥

G∗mc

= κ
(1)
emitted,⊥ = 0.085 523 059 166 (6.27)

Second step: At the 2nd step, 1 + κemitted,⊥ takes the following
value:

κ
(2)
1+⊥ = 1 + κ

(1)
emitted,⊥ (6.28)

Thus, the field takes the following value at the 2nd step:

κ
(2)
emitted,⊥ = 0.085 523 611 918 (6.29)

Third step: At the 3rd step, 1 + κemitted,⊥ is as follows:

κ
(3)
1+⊥ = 1 + κ

(2)
emitted,⊥ (6.30)

Thus, the field takes the following value at the 3rd step:

κ
(3)
emitted,⊥ = 0.085 523 610 517 (6.31)
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Fourth step: At the 4th step, 1 + κemitted,⊥ is as follows:

κ
(4)
1+⊥ = 1 + κ

(3)
emitted,⊥ (6.32)

So, the field takes the following value:

κ
(4)
emitted,⊥ = 0.085 523 610 521 (6.33)

Fifth step: At the 5th step, 1 + κemitted,⊥ is as follows:

κ
(5)
1+⊥ = 1 + κ

(4)
emitted,⊥ (6.34)

So, the field takes the following value:

κ
(5)
emitted,⊥ = 0.085 523 610 521 (6.35)

Fixed point: At the level of precision of 11 digits, the fixed
point is achieved at the fourth iteration step:

κfixed pointemitted,⊥ = 0.085 523 610 521 (6.36)

6.2.2 Bare elementary charge

In the SI system of units, the ratio κemitted,⊥ represents the bare
elementary electric charge (Eq. 3.112):

efixed pointbare,sim. = κfixed pointemitted,⊥ ·
√

~ · c
GC

(6.37)

The calculation yields:

efixed pointbare,sim. = 1.604 034 688 868 · 10−19 C (6.38)

The observed value of the screened elementary charge is shown
next (Tanabashi et al., 2018, Table 1.1):

eobs = 1.602 176 6208(98) · 10−19 C (6.39)

The relative difference is as follows:

∆fixed point
screening =

efixed pointbare,sim. − eobs
eobs

= 0.116% (6.40)
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Theorem 3 Elementary charge: emission of QST

In a triple of QST with nj ∈ {1, 2, 3}, there occur forced oscil-
lations. These forced oscillations emit QST with a scaled field
κemitted,sim.⊥ with the properties shown below. Hereby the sub-
script sim. indicates that the simultaneous emission of QST has
been analyzed.

(1) The emitted QST mediate an interaction with the following
fine-structure constant:

αtheo,sim. = κ2
emitted,sim.⊥ = 7.314 287 957 · 10−3 (6.41)

The relative difference between the theoretical value and the ob-
served value of the fine-structure constant

αobs = 7.297 352 5664(17) · 10−3 (6.42)

is as shown next:

∆α =
αtheo,sim. − αobs

αobs
= 0.23% without corrections (6.43)

(2) The QST emitted by the triple of QST mediate an interac-
tion with the observed fine-structure constant. Correspondingly,
the QST emitted by the triple of QST provide the electric field
and mediate the electric interaction.

(3) The triple of QST represents the following bare elementary
charge:

efixed pointbare,sim. = κfixed pointemitted,⊥ ·
√

~ · c
GC

(6.44)

The evaluation provides the result:

efixed pointbare,sim. = 1.604 034 688 868 · 10−19 C (6.45)

The observed value of the screened elementary charge is shown
next (Tanabashi et al., 2018, Table 1.1):

eobs = 1.602 176 6208(98) · 10−19 C (6.46)
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The relative difference between the bare elementary charge and
the screened elementary charge is as follows:

∆fixed point
screening =

efixed pointbare,sim. − eobs
eobs

= 0.116% (6.47)

(4) The corresponding emitted scaled field is as follows:

κfixed pointemitted,⊥ = 0.085 523 610 521 (6.48)

6.3 Quantum electrodynamics

Based on the above derivation of the bare elementary charge
efixed pointbare,sim. , the theory of quantum electrodynamics, QED,
see e. g. Schwinger (1948), Bialynicki-Birula and Bialynicki-
Birula (1975), Feynman (1985), Wygas (2013), section (5.3),
can be applied as a tool. Using that tool, phenomena such as
screening can be analyzed. Thereby, the theoretical value etheo
of the observed electric charge can be derived from efixed pointbare,sim. as
follows:

6.3.1 Magnetic moment µ

Using the QED, the magnetic moment of the electron has been
derived, see e. g. (Landau and Lifschitz, 1982, § 118), (Greiner
and Reinhardt, 1995, p. 370), (Wygas, 2013, p. 17-20):

µ =
e · ~

2me · c
· Σj=5

j=0 Cj ·
(α
π

)j
(6.49)

Hereby, the coefficients Cj are as follows (Wygas, 2013, p. 17-
20): 

C0

C1

C2

C3

C4

C5

 =



1
0.5

−0.328 478 965 579 193
1.181 241 456

1.9106(20)
9.16(58)

 (6.50)
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6.3.2 Derivation of etheo

In this section, we apply the magnetic moment (Eq. 6.49) to
the derivation of the value of the electric charge that is observed
at a large distance, edistant. That value includes the effect of
screening.

In particular, Eq. (6.49) describes the magnetic moment that
can be observed at a large distance:

µdistant =
edistant · ~

2me · c
· Σj=5

j=0 Cj ·
(α
π

)j
(6.51)

Hereby, the additional summands to 1 in the above Eq. rep-
resent the corrections of the QED, such as screening. Corre-
spondingly, the bare magnetic moment is as follows:

µbare =
ebare,sim. · ~

2me · c
· (1 + 0) (6.52)

Local property: The magnetic moment µ of the electron de-
scribes the mechanism of the formation of the magnetic field at
the location of the electron. This magnetic field is not screened,
as there are no magnetic monopoles, see chapter (5).

So the magnetic moment µ is the same for a local observer
and for a distant observer:

µdistant = µbare (6.53)

We insert Eqs. (6.51, 6.51):

edistant · ~
2me · c

· Σj=5
j=0 Cj ·

(α
π

)j
=
ebare,sim. · ~

2me · c
(6.54)

We solve for edistant:

edistant =
efixed pointbare,sim.

Σj=5
j=0 Cj ·

(
α
π

)j (6.55)
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Hereby, the fine-structure constant α is determined from the
charge as follows:

α = e2 · GC

~ · c
= e2

distant ·
GC

~ · c
(6.56)

We identify that α is a function of edistant and vice versa. Ac-
cordingly, we derive the value of α by a fixed point iteration.

Proposition 8 Elementary charge at large distance

(1) The bare elementary charge efixed pointbare,sim. is effectively reduced
by screening. So an observer at a large distance from an ele-
mentary charge observes the following elementary charge:

edistant =
efixed pointbare,sim.

Σj=5
j=0 Cj ·

(
α
π

)j (6.57)

(2) As the bare elementary charge efixed pointbare,sim. is equal to

efixed pointbare,sim. =

√
~ · c
GC
· κfixed pointemitted,⊥ , (6.58)

we can introduce the distant value κemitted,⊥,distant of the scaled
emitted field,

κemitted,⊥,distant =
edistant√

~·c
GC

, (6.59)

divide Eq. (6.57) by
√

~·c
GC

and derive

κemitted,⊥,distant =
κfixed pointemitted,⊥

Σj=5
j=0 Cj ·

(
α
π

)j (6.60)
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Figure 6.2: Graphic solution: The scaled field κemitted,⊥,distant as
a function of the fine-structure constant α. The point of inter-
section of two functions Eqs. (6.60, dotted) and (6.61, dashed)
represents the theoretical value.

6.3.3 Iteration for κemitted,⊥,distant

In this section, we determine κemitted,⊥,distant by a fixed point
iteration. In particular, we solve two functions of α simultane-
ously, Eq. (6.60) as well as:

κemitted,⊥,distant =
√
α (6.61)

A graphic solution is shown in Fig. (6.2), while a numerical
solution is presented below.

Zeroth step: At the zeroth step, κemitted,⊥,distant takes the value
obtained without using the sum in Eq. (6.60). It is the result
described in THM (3):

κ
(0)
emitted,⊥,distant = κfixed pointemitted,⊥ = 0.085 523 610 521 (6.62)

Accordingly, the fine-structure constant α is the square of the
emitted field κ

(0)
emitted,⊥,distant at the zeroth iteration step:

α(0) = 7.314 287 956 548 · 10−3 (6.63)
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First step: Using α(0), we determine κ
(1)
emitted,⊥,distant as follows:

κ
(1)
emitted,⊥,distant =

κ
(0)
emitted,⊥,distant

Σj=5
j=0 Cj ·

(
α(0)

π

)j = 0.085 424 318 461 (6.64)

Consequently, α takes the following value at the first step:

α(1) = 7.297 314 184 492 · 10−3 (6.65)

Second step: At the 2nd step, we evaluate:

κ
(2)
emitted,⊥,distant =

κ
(0)
emitted,⊥,distant

Σj=5
j=0 Cj ·

(
α(1)

π

)j = 0.085 424 548 268 (6.66)

So α takes the following value at the 2nd step:

α(2) = 7.297 353 446 864 · 10−3 (6.67)

Third step: At the 3rd step, κemitted,⊥,distant is as follows:

κ
(3)
emitted,⊥,distant =

κ
(0)
emitted,⊥,distant

Σj=5
j=0 Cj ·

(
α(2)

π

)j = 0.085 424 547 737 (6.68)

Thus, α takes the following value at the 3rd step:

α(3) = 7.297 353 356 045 · 10−3 (6.69)

Fourth step: At the 4th step, we obtain:

κ
(4)
emitted,⊥,distant =

κ
(0)
emitted,⊥,distant

Σj=5
j=0 Cj ·

(
α(3)

π

)j = 0.085 424 547 738 (6.70)

So, α takes the following value:

α(4) = 7.297 353 356 255 · 10−3 (6.71)
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Fifth step: At the 5th step, we evaluate:

κ
(5)
emitted,⊥,distant =

κ
(0)
emitted,⊥,distant

Σj=5
j=0 Cj ·

(
α(4)

π

)j = 0.085 424 547 738 (6.72)

So, α takes the following value:

α(5) = 7.297 353 357 255 · 10−3 (6.73)

Fixed point: At step five, we obtain the same results as in step
four, at the chosen level of accuracy of 11 digits. At this fixed
point, we obtain the following results:

κ
(5)
emitted,⊥,distant = κfixed pointemitted,⊥,distant = 0.085 424 547 738 (6.74)

The corresponding charge is as follows:

efixed pointdistant = 1.602 176 720 829 · 10−19 C = etheo (6.75)

6.4 Comparison with observed charges

In this section, we compare the derived elementary charge with
observations of that charge. Hereby, we emphasize that our
present theory is able to analyze the elementary charge in a
separated manner, whereas classical electrodynamics and quan-
tum electrodynamics inherently describe charge and mass in
combination. Accordingly, charges of particular particles are
considered. Usually, the electron e− and positron e+ are
especially representative for e, the elementary charge.

6.4.1 Deviation of electron and positron charge

The relative difference of the charges of the electron and the
positron is as follows (Tanabashi et al., 2018, p. 36):

∆e+,e−,rel. =
qe+ + qe−

eobs
< 4 · 10−8 (6.76)
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So the representative particles e− and e+ may exhibit the above
relative charge deviation of 4 · 10−8.

6.4.2 Deviation of charge conjugation

The relative deviation from charge conjugation invariance rep-
resents possible deviations of observed charges that should take
the value of the elementary charge and the observed charges.
These relative and possibly statistical deviations range from
3.1 · 10−8 to 2.4 · 10−3 (Tanabashi et al., 2018, p. 114-115):

∆q+,q−,rel. ∈ [3.1 · 10−8, 2.4 · 10−3] (6.77)

6.4.3 Deviation of observation of electron mass

The relative error of measurement or observation of the mass of
the electron may be essential for a comparison of the elementary
charge with the charge of the electron. This is the case, as there
are possible deviations between charges of elementary particles
that are assumed to be equal in the SMEP.

The relevance of the mass is increased, as the measurements
of the charge of a particle include screening, and this is concep-
tually described in the framework of the theory of QED. In that
theory, results are obtained by using the mass and the charge
in common expressions. So the difference between bare charge
and observed charge includes a relative error of the order of
magnitude of the mass of the electron. That error is evaluated
next: The observed value of the mass of the electron is shown
next (Tanabashi et al., 2018, Table 1.1):

me,obs = 0.510 998 9461(31)
MeV

c2
(6.78)

The relative error of measurement or observation of that mass
is as follows:

∆obs. me,rel. =
3.1 · 10−8 MeV

c2

me,obs
= 6.1 · 10−8 (6.79)
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6.4.4 Deviation of observation of electron charge

The observed value of the screened elementary charge is shown
next (Tanabashi et al., 2018, Table 1.1):

qe− = 1.602 176 6208(98) · 10−19 C (6.80)

The relative difference is as follows:

∆rel.,etheo,qe−
=
etheo − qe−

qe−
= 5.4 · 10−8 (6.81)

6.4.5 Interpretation

A possible comparison of the theoretical elementary charge etheo
and the charge of the electron should include both errors of mea-
surement, ∆obs. me,rel. and ∆q+,q−,rel.. These add up as follows:

∆obs. sum,rel. = ∆obs. me,rel. + ∆q+,q−,rel. = 6.71 · 10−8 (6.82)

That sum of the relative errors of measurement or observation
is larger than the relative difference between theory and obser-
vation:

∆rel. obs. e+me
= 6.71 · 10−8 > 5.4 · 10−8 = ∆rel.,theo,obs e (6.83)

In this sense, the difference between theory and experiment is
smaller than the error of measurement. This view is additionally
supported by the other deviations summarized above. So the
theory is in precise accordance with observation.

Theorem 4 Elementary charge formed by QST

In a triple of QST with nj ∈ {1, 2, 3}, there occur forced oscil-
lations. These forced oscillations emit QST with a scaled field
κemitted,⊥,distant with the properties shown below. Hereby the sub-
script distant indicates that the value observed by a distant ob-
server has been evaluated.
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(1) The emitted QST mediate an interaction with the following
fine-structure constant:

αtheo,distant = κ2
emitted,distant⊥ = 7.297 353 356 255 · 10−3 (6.84)

(2) The QST emitted by the triple of QST mediate an interac-
tion with the observed fine-structure constant. Correspondingly,
the QST emitted by the triple of QST provide the electric field
and mediate the electric interaction.

(3) The considered triple of QST represents the following ele-
mentary charge:

efixed pointdistant = 1.602 176 720 829 · 10−19 C = etheo (6.85)

(4) The considered triple of QST represents the following scaled
emitted field:

κfixed pointemitted,⊥,distant = 0.085 424 547 738 (6.86)

(5) For the prototypical case of the electron, the observed value
of the screened elementary charge is shown next (Tanabashi
et al., 2018, Table 1.1):

eobs = 1.602 176 6208(98) · 10−19 C (6.87)

The relative difference between the theoretical elementary charge
and the observed elementary charge of the electron is as follows:

∆rel.,theo,obs e = 5.4 · 10−8 (6.88)

(6) In order to compare our theoretical value of the elementary
charge with the relative error of measurement of the electric
charge of the electron, we add the relative errors of measurement
of the charge and of the mass, as both influence the observed
value:

∆rel. obs. e+me
= 6.71 · 10−8 (6.89)
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(7) The relative difference between our theoretical value of the
elementary charge and the observed value of the electric charge
of the electron (Eq. 6.88) is smaller than the respective error of
measurement (Eq. 6.89). In this sense our theoretical value of
the elementary charge is in precise accordance with observation.



Chapter 7

Discussion

In this chapter, we systematically discuss our theory and results.
For it we apply the five categories of explanatory power
(Ylikoski and Kourikoski, 2010, S. 4.1 - 4.5).

(1) Non-sensitivity: The theory should not be very sensitive to
changes in the background condition, (Ylikoski and Kourikoski,
2010, section 4.1). We achieve this by our application of the new
theory of quantum gravity that we tested in the field of cosmol-
ogy, whereby we apply that theory to the field of elementary
particles. In other words, the present theory is robust.

(2) Precision: Our results are in precise accordance with ob-
servation, as the difference to observation is smaller than the
error of observation, see THM (4). Moreover, our theory ex-
plains the H0 tension in a precise manner (Fig 2.14), derives
the cosmological parameters (Tab. 7.1) as well as the masses
of neutrinos and the mass of the Higgs boson (Tab. 7.2), all in
precise accordance with observation.

These results include a precise description of the dark en-
ergy and the vacuum: Firstly, the cosmological parameters in-
clude ΩΛ, which describes the dark energy. Secondly, the dark
energy is a mixture of corresponding QST, so it is a polychro-
matic vacuum, whereby the time evolution of the mixture cor-

111
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responds to the time evolution of H0, in precise accordance with
observation, see Carmesin (2021c). Thirdly, the dark energy es-
tablishes the vacuum, which is precisely described in Carmesin
(2021a). Fourthly, the excitation states of that vacuum include
the masses of elementary particles, in precise accordance with
observation, see Carmesin (2021a), whereby the internal dy-
namics of these elementary particles explains the elementary
charge, the basis of the electromagnetic interaction.

(3) Factual accuracy: The theory at a given level of abstrac-
tion should exhibit a relatively small number of idealizations or
falsehoods, (Ylikoski and Kourikoski, 2010, section 4.3). In our
theory we overcome several common idealizations:

(3a) Instead of presuming three dimensional space, we derive
the present-day stability of three dimensional space. Further-
more, we derive gravitational instabilities that caused higher
dimensional space in the very early universe, see e. g. Carmesin
(2021d) or Fig. 2.12).

(3b) Instead of presuming that the increase of the universe is
based on an increase of volume only, we derive the dimensional
phase transitions and their contribution to the increase of space,
Carmesin (2021d) or Fig. 2.12).

(3c) Instead of presuming that general relativity, GR, could be a
local theory, we derived the nonlocality of GR and the solution
of the EPR paradox as a consequence, see e. g. (Carmesin,
2021d, THM. 5 and COR. 2).

(3d) Instead of presuming that the electromagnetic interaction
could be a fundamental theory, we derive the electromagnetic
interaction from quantum gravity.

(3e) Instead of presuming that the elementary charge could be a
constant of nature that can only by obtained by measurement,
we derive the elementary charge from quantum gravity.
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(4) Integration: Our new theory of quantum gravity ranges
from the Big Bang until today and beyond, it ranges from the
Planck scale towards the light horizon, the horizon of objects
that have causal influence upon us. That huge range is not
set arbitrarily, instead it has been achieved by analyzing and
integrating various fields of physics:

(4a) We integrate GR and quantum physics.

(4b) We integrate or unify the local dynamics described by the
Schwarzschild metric and the global dynamics of space, see e.
g. (Carmesin, 2021d, CHAP. 1).

(4c) Using these concepts,

we analyzed the stability of space as a function of density,

we discovered a series of gravitational instabilities,

we discovered a corresponding series of phase transitions that
occurred in the early universe,

thereby, we discovered the structure of the vacuum,

hereby, we discovered the vacuum’s possible excitation modes.

(4d) Based on these discoveries, we basically integrate or unify
various fields of physics:

We integrate the standard model of cosmology, SMC, and the
standard model of elementary particles, SMEP. In particular,
we integrate the electromagnetic interaction and gravity.

(4e) We solve a variety of basic problems of physics, see S. (7.3).

(4f) We derive several predictions, see section (7.3).

(5) Cognitive salience: It should be relatively easy to under-
stand a theory, and in particular a theory should apply concepts
that are already known, see (Ylikoski and Kourikoski, 2010, sec-
tion 4.5). Accordingly, the cognitive salience of our theory is
especially large for the following reasons:
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(5a) Our theory essentially applies the well known concepts of
GR, quantum physics, elementary particles, phase transitions
and the geometry of space.

(5b) Moreover, our theory reveals how to unify these concepts,
and so our theory makes aware connections among these con-
cepts. Thus, the understanding of these concepts becomes eas-
ier, without using any simplification and with providing novel
results.

7.1 Comparison with observation

In this S., we present theoretical values xtheo, corresponding ob-
served values xobs and respective relative errors, see table (7.1):

∆theo−obsx =
xtheo − xobs

xobs
· 100% (7.1)

Hereby, we analyze absolute values only.

7.1.1 Condition of derivation

Thereby we derived all theoretical values by using quantum
gravity, the corresponding universal constants G, c, kB and h,
see Tanabashi et al. (2018), as well as the Hubble parameter
H0 at z = 1090 as a reference for the present-day time after the
Big Bang, see Planck-Collaboration (2020). In particular, we
do not apply any other numerical input, such as fit parameters
or boundary values, for instance.

7.1.2 Cosmological and density parameters

Based on our theory, we derived all cosmological parameters,
except the independent time after the Big Bang.
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quantity xtheo xobs |∆theo−obsx|
ΩΛ 0.68265 0.6847± 1.1% 0.3%

ΩK,av. 0 0.0007± 171% 100%

ΩM 0.31726 0.3153± 1.1% 0.6%

105 · Ωγ 5.35 5.335± 5.68% 0.26%

105 · Ων 3.9556 3.8742± 9.7% 2.1%

105 · Ωr 9.306 9.265± 3.1% 0.44%

σ8 0.8044 0.8057± 1% 0.16%

Table 7.1: Using H0, we derived all cosmological parameters.
Here we applied ΩΛ + ΩM + Ωr = 1, for details see Carmesin
(2021a).

Our comparison in Table (7.1) shows: The relative difference
of our theoretical values and the corresponding observed values
is smaller than the error of measurement. So our results are in
precise accordance with observation. For details see Carmesin
(2021a) or glossary.

7.1.3 Masses and the elementary charge

The masses of the elementary particles of the SMEP can be
divided into two groups:

(1) masses of neutrinos

(2) masses of the Higgs boson and masses caused by the Higgs
boson, including masses of quarks, W+,0,− bosons, electrons,
muons and tauons.

(3) the remaining elementary particles of the SMEP are the
photons and gluons, these have zero mass.

Accordingly, we derived the masses of neutrinos in terms of the
density parameter Ων. Moreover, we derived the mass of the



116 CHAPTER 7. DISCUSSION

Higgs boson, mH,full,theo = EH,full,theo/c
2.

We derived the elementary charge from quantum gravity, see
THM (4).

quantity xtheo xobs ∆theo−obsx reference

105 · Ων 3.9556 3.8742± 9.7% ±2.1% THM∗ 7

mH in GeV
c2 125.541 125.18± 1.1% ±0.29% THM∗ 8,9

ẽ 0.085 424 548 0.085 424 543 5.4 · 10−8 THM 3

Table 7.2: Using H0 and the universal constants G, c and h, we
derived the masses that represent or cause all masses of the
SMEP, see (Carmesin, 2021a, THM* 7-9). Using the above
three universal constants, we derived the elementary charge.

Our comparison in Table (7.2) shows: The relative difference
of our theoretical values and the respective observed values is
smaller than the error of measurement. Thus our theory is in
precise accordance with observation. This holds for all masses
that represent or cause all masses of the SMEP as well as for
the elementary charge.

7.2 Predictions

In this section we apply the basic solution of the hierarchy prob-
lem in order to predict novel elementary particles. In a dimen-
sion D the ZPE of the longitudinal mode is as follows:

ZPELONG,D =
EP

2
/2

Dhori−D
D = 6.1049 · 1018 GeV/2

Dhori−D
D (7.2)

Here we used Dhori = 301. The corresponding object consists of
the three lowest excitation modes with n = 1, n = 2 and n = 3:

Eobject,D = Σn=3
n=1(2n+ 1)ZPELONG,D = 15 · ZPELONG,D (7.3)
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Four dimensional QST: In D = 4 the predicted object has the
energy Eobject,D=4 = 4.077 MeV and is very unstable.

7.2.1 Observation of dimensional phase transition?

A stochastic gravitational wave background, GWB, has been
observed, and it is interpreted as a relic of phase transitions in
the early universe. Thereby a transition temperature with the
corresponding energy in the following interval has been found,
see e. g. (Ratzinger and Schwaller, 2021, p. 5) or (Arzoumanian
et al., 2021, Fig. 1):

EGWB,obs ∈ [1; 10] MeV (7.4)

This observation can be interpreted as follows: At the last
dimensional phase transition of the cosmic unfolding, the above
four dimensional elementary particles or QST with Eobject,D=4 =
4.077 MeV unfolded to an object with energies below one eV,
see theorem, and thereby the object emitted its energy in the
form of gravitational waves.

7.2.2 Deviation of the field of an elementary particle

The elementary charge is the same in each charged elementary
particle, ẽ = κ⊥, see THM. (1).

However, an elementary particle with its particular mass
mparticle,dist and with the elementary charge ẽ = κ⊥ generates
an electric field that depends slightly on the mass mparticle,dist,
see section (4.6). It might be possible to measure this effect in
the future.

7.2.3 Bare elementary charge

We derived a value for the bare elementary charge, see THM
(3). It might be possible to measure this effect in the future.
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7.2.4 No magnetic monopoles

We showed how the QST within elementary particles can form
electric charge and electromagnetic interaction. Thereby, the
electric charge is primarily formed, see chapters (3, 6), whereas
the magnetic interaction is formed as a consequence, see chapter
(5). According to this structure of formation of interactions, we
predict that there are no magnetic monopoles in nature.

7.3 Solved problems

We summarize solved problems in order to make transparent
how our theory integrates various fields and can be used to
solve problems:

problem of rapid enlargement of distances, see Guth (1981),
solved since 2017, see e. g. Carmesin (2017b), Carmesin (2021b)

horizon problem, see Guth (1981), solved since 2017, see e. g.
Carmesin (2017b), Schöneberg and Carmesin (2021)

’inflaton’ hypothesis and reheating problem, see Guth (1981)
and Nanopoulos et al. (1983), Broy (2016), solved since 2017,
see e. g. Carmesin (2017b), Carmesin (2020a)

dark matter problem, see Zwicky (1933), Sanders (2010), solved
since 2018, see Carmesin (2018g), Carmesin (2019c)

dark energy problem, see Josset et al. (2017), solved since 2018,
see e. g. Carmesin (2018f), Carmesin (2021d)

H0 tension, see Riess et al. (2019), solved since 2018, see for
instance Carmesin (2018f), Carmesin (2021d)

σ8 tension, see Tröster et al. (2020), solved in Carmesin (2021d)

fine-tuning problem, see e. g. Landsman (2016), partially
solved since 2019, see Carmesin (2019c), and for the case of
all cosmological constants, see section (7.1.2
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flatness problem, see Guth (1981), solved since 2020, see e. g.
Carmesin (2020b), Carmesin (2021d)

zero energy hypothesis, see Tryon (1973), solved 2020, see e. g.
Carmesin (2020b)

graviton hypothesis, see e. g. Blokhintsev and Galperin (1934),
solved in Carmesin (2021d)

EPR paradox and nonlocality, see Einstein et al. (1935), solved
in Carmesin (2021d)

problem of deriving macroscopic expansion of space from micro-
scopic gravity, solved in Carmesin (2020b), Carmesin (2021d)

hierarchy problem of particle physics, see Shaposhnikov and
Shkerin (2018), solved here

mass problem of the Higgs boson and the neutrinos, see Aad
et al. (2012), Chatrchyan et al. (2012) Peskin (2015), Tanabashi
et al. (2018), solved in Carmesin (2021a)

interaction problem of the nature of an interaction that can be
repulsive as well as attractive, solved here in the framework of
an effective interaction energy

By deriving the elementary charge e from quantum gravity, we
showed that this charge e is not a fundamental constant of na-
ture.

Using quantum gravity, we derived the elementary charge e,
including multiples q = n·e. Then we applied a usual derivation
of electromagnetism from the concept of charge q or e. In this
manner we showed that the electromagnetic interaction is not
a fundamental interaction of nature.

By deriving the electromagnetic interaction from the elementary
charge e or charge q, which are based on quantum gravity, we
showed that the magnetic force is a relativistic consequence of
the electric charge. Accordingly, within the discovered structure
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of the formation of the electromagnetic interaction, there are no
magnetic monopoles.

Several fundamental problems are solved for the first time in
the present book. For it we use our theory. These problems
include the fine-tuning problem of the elementary charge e (is e
a fundamental constant of nature?), the problem of fundamental
interactions (is the electromagnetic interaction fundamental?),
the problem of possibility of magnetic monopoles (are there
magnetic monopoles?).

We emphasize that our above solutions of problems achieve pre-
cise accordance with observation. Hereby, we do not use any fit
parameter, instead we use quantum gravity and the universal
constants G, c, kB and h only. Moreover, our theory is well-
founded, see e. g. Carmesin (2021d).

7.4 Interpretation

In this section, we use our derivations in order to develop inter-
pretations.

7.4.1 Basic physical structures

In this section, we identify basic or fundamental physical struc-
tures. We derived the electromagnetic interaction based on
quantum gravity. Hereby, the elementary charge is formed
by three QST. Accordingly, quantum gravity is a fundamental
physical structure, whereas the elementary charge is a derived
and composed physical entity. Consequently, the electromag-
netic interaction is a derived physical structure. Correspond-
ingly, the universal constants of quantum gravity are funda-
mental, namely G, c and h. In contrast, the universal constants
of electromagnetism are derived, namely e, α and ε0.

The Boltzmann constant kB enables the calculation of phys-
ical quantities such as the energy or the entropy from statistical
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quantities such as the number of states. Correspondingly, kB
is a basic constant used for the application of statistics and
combinatorics to physics.

7.4.2 Basics of space, time, particles and interactions

In this section, we summarize basic structures in physics. In
essence, these structures can be summarized by space, time,
particles and interactions, see e. g. Tanabashi et al. (2018) and
Planck-Collaboration (2020).

We use our results about mass, see Carmesin (2021a), and
about the electromagnetic interaction. Presumably, the weak
interaction can be described by quantum gravity as well, as the
electromagnetic and weak interaction have been unified already,
see e. g. Weinberg (1967), Tanabashi et al. (2018). Moreover,
one might expect that the strong interaction can be explained
by quantum gravity, as the structure of the fields of the corre-
sponding theory of quantum chromodynamics is similar to the
fields of electromagnetism (Tanabashi et al., 2018, S. 9.1).

Accordingly, the ultimate basic structure is formed by space
and time.

7.4.2.1 Quantum field theories

Present-day physicists often use a quantum field theory,
QFT as a basic tool, see e. g. Schwartz (2014). An exam-
ple is the QED, see C. (5). In this book, we confirmed that
QED is a useful tool in order to calculate corrections that are
caused at a large distance of an elementary particle and at low
density, see C. (6).

As a matter of fact, each field theory and each QFT requires
a continuous space or spacetime as a prerequisite. However, we
derived that space exhibits gravitational instabilities at high
density, see e. g. Fig. (2.12). Accordingly, space undergoes dis-
continuous phase transitions at the corresponding critical den-
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sities. Thus the required continuous space or spacetime is not
provided in nature. Consequently, the QFTs are applicable only
in a restricted range.

7.4.2.2 The present new theory of quantum gravity

The present new theory of quantum gravity describes quanta of
space time, QST. Their properties are characterized with help
of a Hilbert space. As a consequence, no space or spacetime
is required in this theory. Accordingly, the QST describe the
continuous as well as the discontinuous time evolution of space.
Thereby, the QST describe the time evolution of the universe
including all cosmological constants (except one independent
constant describing the present-day time after the Big Bang).

As a further result, the QST describe the full spectrum of
states and excitation states of the vacuum. As an additional
and essential result, the QST describe the formation of mass, see
Carmesin (2021a). These masses exhibit an internal dynamics,
and this dynamics describes the formation of the elementary
charge and the electromagnetic interaction.

Hereby, all results are achieved in precise accordance with
observation and without any fit parameter. Thereby, the new
theory of quantum gravity has been developed or derived in a
well-founded manner.

7.4.2.3 Field ~G∗⊥ corresponding to q = e/3

In quarks, the charge q = e/3 has been observed, see Tanabashi
et al. (2018). In this section, we show how the field ~G∗⊥ corre-
sponding to such a charge q = e/3 can form.

In chapter (3), we derived the formation of an elementary
charge e by three QST. In general, these three QST can form a
single quantum in terms of a linear superposition.

Common mass mc: In that case, the mass of the superposition
is equal to one third of the mass mc of the three QST. We derive
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this fact by an investigation of the orthonormal eigenstates of
the energy operator Ê:

ÊΨj = Ej ·Ψj (7.5)

For the case of the normalized linear combination Ψ = 1√
3
(Ψ1 +

Ψ2 + Ψ3), we investigate the expectation value of the energy:

〈E〉 = 〈Ψ|ÊΨ〉 =
1

3
· 〈Ψ1 + Ψ2 + Ψ3|Ê(Ψ1 + Ψ2 + Ψ3)〉 (7.6)

We evaluate the operator:

〈E〉 =
1

3
· 〈Ψ1 + Ψ2 + Ψ3|(E1Ψ1 + E2Ψ2 + E3Ψ3)〉 (7.7)

Using the orthogonality of the eigenstates, we derive:

〈E〉 =
1

3
· Σ3

j=1Ej · 〈Ψj|Ψj〉 (7.8)

As the eigenstates are normalized, we obtain:

〈E〉 =
1

3
· Σ3

j=1Ej (7.9)

So the energy of the linear combination is one third of the sum
of the energies. Consequently, the dynamic mass of the linear
combination is one third of the sum of the dynamic masses. In
particular, for the case of a non-relativistic state, the mass of
the linear combination is one third of the sum of the masses,
m̃c = 1/3.

Charge q resulting from m̃c = 1/3: As a consequence, the formed
field is equal to one third of the field ~G∗⊥ formed by the three
QST. Consequently, the electric field corresponds to a charge
q = e/3, see Eq. (3.96). Of course, the theoretical charge κ⊥
is still equal to one elementary charge ẽ. However, as a distant
observer can only measure the field, a distant observer gets the
impression that there would be a charge q = e/3.
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general
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standard model of
elementary particles

standard model of
cosmology &H0

dark energy derived
vacuum derived

mass problem solved

elementary charge derived

cosmological parameters derived electromagnetism derived

Figure 7.1: Paths from basic theories to derivations, explana-
tions and calculations: These derivations reflect the structure
of physics and have been published e. g. since Carmesin (2017b)
towards Carmesin (2021a).

7.4.2.4 Outlook

There are many interesting questions that could be analyzed on
the basis of the present theory in the future, examples are as fol-
lows: Is it possible to derive more interactions and symmetries
in elementary particle physics, see e. g. Tanabashi et al. (2018),
on the basis of quantum gravity? Is it possible to explain open
questions of structure formation and particle formation by using
quantum gravity? How can the dimensional phase transitions
in the early universe be observed directly and used technically,
see Sect. (7.2.1)?
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7.5 Unification of SMC and SMEP

The standard models of cosmology, SMC, and of elementary
particles, SMEP, have been unified as follows, see Fig. (7.1):
Based on the three basic concepts, GR, SP (statistical physics)
and QP, QG has been developed. Therefrom, QST and di-
mensional phase transitions including cosmic unfolding have
been derived, see e. g. Carmesin (2017b), Carmesin (2019c),
Carmesin (2021d).

Using these results, we derived the dark energy, all essen-
tial cosmological parameters, the basic masses, the elementary
charge as well as the electromagnetic interaction. Altogether,
we derived our results from the basic theories only. As numer-
ical input, we used the universal constants G, c, kB and h as
well as the time reference H0 only. In this manner, we achieved
precise accordance with observation.

7.5.1 Public documentation and discussion

The theory in Fig. (7.1) has been published since Carmesin
(2017b), and it has been discussed at many conferences. This
process is described as follows:

Reviewed papers: Several results have been published in peer
reviewed papers, see1.

Conferences: Many results have been presented at conferences,
see2.

1Peer reviewed papers: Carmesin (2016), Carmesin (2018a), Carmesin
(2018c),Carmesin (2018d),Carmesin (2018b), Helmcke et al. (2018), Sprenger and
Carmesin (2018), Carmesin (2019b), Carmesin (2020a), Carmesin and Carmesin (2020),
Heeren et al. (2020), Schöneberg and Carmesin (2020), Carmesin (2021b), Carmesin
(2021e), Schöneberg and Carmesin (2021), Lieber and Carmesin (2021), Sawitzki and
Carmesin (2021)

2Presentations at conferences: Carmesin (2017a), Carmesin and Carmesin
(2018a),Carmesin and Carmesin (2018b), Helmcke et al. (2018), Sprenger and Carmesin
(2018), Carmesin and Brüning (2018), Carmesin (2019d), Carmesin (2019a), Brüning
et al. (2019), Rademacker et al. (2019), Carmesin (2019f), Brüning and Carmesin (2019),
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Books: Four books have been published, see3. Additionally,
a book series has been started, and therein, five books have
already been published, see4.

Internet: Many results are available at my page at Research
gate:
http://www.researchgate.net/profile/ Hans Otto Carmesin
Some results are available at my homepage:
hans-otto.carmesin.org

7.5.2 An essential insight by quantum gravity

Quantum gravity reveals that there occurred an enormous se-
quence of phase transitions in the early universe: a cosmic un-
folding of space, ranging from the Planck scale to the millimeter
scale, see Fig. (2.12). The corresponding quantum states cause
all masses of elementary particles, and they form neutrinos,
Higgs bosons, the quanta of dark energy as well as many novel
elementary particles, ranging from the Planck mass to the neu-
trino mass scale. Moreover, these quanta form the elementary
charge and the electromagnetic interaction.

Carmesin (2020a), Carmesin and Carmesin (2020), Heeren et al. (2020), Schöneberg and
Carmesin (2020), Carmesin (2021b), Carmesin (2021e), Schöneberg and Carmesin (2021),
Lieber and Carmesin (2021), Sawitzki and Carmesin (2021)

3Books: Carmesin (2017b), Carmesin (2018g), Carmesin (2018f), Carmesin (2018e)
4Book series since 2019: Carmesin (2019c), Carmesin (2020c), Carmesin (2020b),

Carmesin (2021d), Carmesin (2021a)
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Appendix

8.1 Universal constants

In this section we present universal constants. Hereby, ε0 is not
a fundamental constant, as it can be derived from fundamental
constants.

quantity observed value reference

G 6.674 08(31) · 10−11 m3

kg·s2 Tanabashi et al. (2018)

c 299 792 458 m
s , exact Tanabashi et al. (2018)

h 6.626 070 15 · 10−34 Js, exact Newell et al. (2018)

kB 1.380 649 · 10−23 J
K , exact Newell et al. (2018)

ε0 8.854 187 817 · 10−12 F
m Tanabashi et al. (2018)

Table 8.1: Universal constants ((Newell et al., 2018, table 3),
(Tanabashi et al., 2018, table 1.1)).
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8.2 Observed values

quantity observed value reference

H0 in km
s·Mpc 67.36± 0.54 (0.8 %) [CMB]

ΩΛ 0.6847± 0.0073 (1.1 %) [CMB]

ΩK 0.0007± 0.0019 [CMB]

zeq 3402± 26(0.76%) [CMB]

ΩM 0.3153± 0.0073(2.3%) [CMB]

Ωr 9.265+0.288
−0.283 · 10−5 (3.1 %) [CMB]

σ8 0.8057± 0.008(1%) [CMB]

ρcr,t0 in kg
m3 8.660+0.137

−0.137 · 10−27 (1.6 %) [CMB]

ρ̃cr,t0 7.037 · 10−123 [CMB]

ρ̃v,t0 4.8181 · 10−123 [CMB]

Ωb 0.0493± 0.00032 [CMB]

Ωc 0.2645± 0.0048 [CMB]

Rlh 4.1412 · 1026 m [C2019]

TCMB 2.7255(6)(0.02%) K [T2018]

ΩCMB 5.4501 [C2021]

Ων 3.8742 · 10−5(9.7%) [C2021]

ẽ 0.085 424 548 [T2018]

α 7.297 352 5664(17) · 10−3 [T2018]

Table 8.2: Observations: [CMB] marks data based on the CMB
((Planck-Collaboration, 2020, table 2)), in particular based on
the modes TT, TE, EE, the low energy and lensing. Quantities
with a tilde are presented in natural units alias Planck units
(see subsection 8.3). Hereby 1 Mpc = 3.0856776 · 1019 km.
[C2019] is based on an evaluation in Carmesin (2019c). [C2021]
is based on an evaluation in Carmesin (2021a). [T2018] is based
on Tanabashi et al. (2018).
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8.3 Natural units

Planck (1899) introduced Planck units. We mark quantities in
natural units by a tilde, see Tab. 8.3 or Carmesin (2019c).

physical entity Symbol Term in SI-Units

Planck length LP

√
~G
c3 1.616 · 10−35 m

Planck time tP
LP
c 5.391 · 10−44 s

Planck energy EP

√
~·c5
G 1.956 · 109 J

Planck mass MP

√
~·c
G 2.176 · 10−8 kg

Planck volume VD,P LDP

Planck volume, ball V̄D,P VD · LDP
Planck density ρP

c5

G2~ 5.155 · 1096 kg
m3

Planck density, ball ρ̄P
3c5

4πG2~ 1.2307 · 1096 kg
m3

Planck density, ball ρ̄D,P
MP

V̄D,P

Planck temperature TP TP = EP
kB

scaled volume ṼD
VD
V̄D,P

scaled energy Ẽ EP E = Ẽ · EP

scaled density ρ̃D
M̃
r̃D= Ẽ

r̃D ρD = ρ̃D · ρ̄D,P
scaled length x̃ LP x = x̃ · LP
Planck charge qP

√
4πε0 · ~ · c 11,71 e

scaled charge q̃ q̃ = q
qP

Table 8.3: Planck - units.
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8.4 Fields and scaled fields

In this section we present the various types of fields.

quantity relation field of ...

G∗mc
Eq. 3.57 triple

~G∗j Eq. 3.32 triple

G∗α,j→i Eqs. 3.56, 3.68, 6.10 emission

G∗emitted,⊥ Eq. 3.70 QST emitted by triple

G∗mc,rest
Eq. 3.61 process of emission

κany type κany type =
G∗any type
G∗mc

scaled form

κ1+⊥ Eq. 6.23 κ1+⊥ = 1 + κ⊥

κsim. Eq. 6.11 simultaneous forced osc.

Table 8.4: Fields and scaled fields.

8.5 Glossary

Words marked bold face can usually be found in the glossary.

Abbreviation: S. (section), C. (chapter), DEF. (def-
inition), PROP. (proposition), THM. (theorem).

amplitude of matter fluctuations, σ8: (C. 1)

Big Bang: Start of time evolution of visible space

causal horizon: light horizon

cdm, cold dark matter: See Fig. (1.1), Carmesin
(2018e) or Carmesin (2019c).

CMB, Cosmic Microwave Background: Radia-
tion emitted at z ≈ 1090. (Tab. 8.2)

classical electrodynamics: C. (5)
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complete time evolution of spacetime: Evolution
of the light horizon Rlh(t) ranging from the Planck
- length LP to the actual light horizon Rlh(t0)

cosmic unfolding: It causes the extremely rapid
distance enlargement in the early universe

cosmological constant: Λ corresponds to the dark
energy with its density ρΛ (Tab. 8.2).

coupling constant of electrodynamics: S. (1.1.1),
C. (3)

curvature parameter: the curvature parameter k
describes the global curvature of space, see e. g.
Carmesin (2021d)

dark energy: Energy of the cosmological density of
the vacuum ρΛ (Tab. 8.2).

density, critical: ρcr,t0 or ρcr (Tab. 8.2 or e. g.
Carmesin (2021d))

density, critical, at a dimensional transition:
ρ̃D,c

density parameter: Ωj = ρj/ρcr,t0 (Tab. 8.2)

density, vacuum: ρΛ = ΩΛ · ρcr,t0 (Tab. 8.2)

dimensional distance enlargement factor: A fac-
tor ZD+s→D occurs at a dimensional phase transi-
tion from a dimension D+s to a dimension D and
describes the corresponding increase of distances
(Fig. 2.12).

dimension of the space: (C. 2)

dimensional horizon Dmax or Dhorizon: It is the
maximal dimension that the space within the ac-
tual light horizon can have achieved in the past.
Thereby the following transformations of space are
essential: the isotropic scale and the enlargement
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of distance caused by a → dimensional transition.
(S. 2.5.2).

dimensional phase transition: Change of spatial
dimension D (S. 2.5.2).

dimensional unfolding: Change of spatial dimen-
sion D (S. 2.5.2).

dynamical mass: M = E
c2

elementary charge: S. (1.1.1)

expansion of space: Expansion since the Big Bang
at constant dimension D (S. 2.5.2).

extremely rapid distance enlargement in the
early universe: Guth (1981) conjectured that
factor, the factor has been explained by dimen-
sional transitions in this book and by Carmesin
(2017b), Carmesin (2019c)

flat, flatness, flatness problem: Space without
curvature is flat (S. 7.3).

forced oscillation: C. (3)

frame: Each observation apparatus is localized in
spacetime. That localization establishes a frame.

gravitational field: G∗ (C. 1)

GR: General relativity (C. 1)

horizon: Global limit of visibility (C. 1)

Hubble - parameter: H = ȧ
a (C. 1)

Hubble - constant: H0 = H(t0) Hubble parameter
at t0

incomplete: A theory that does not describe the
physically known objects or properties is incom-
plete
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light horizon, actual: Rlh = 4.142 · 1026 m (Tab.
8.2)

modes of modification: C. (2)

natural units: Planck - units (Tab. 8.3)

pbh, primordial black holes: See Fig. (1.1) and
Carmesin (2020b).

Planck scale: At that scale there occurs the length
limit and the density limit in nature. Accord-
ingly, natural units or Planck units have been in-
troduced (Tab. 8.3).

polychromatic vacuum: It includes several wave-
lengths of the quanta of space, see e. g. Carmesin
(2018f), Carmesin (2018e), Carmesin (2019c) or
Carmesin (2021d)

principle of lowest action: C. (5)

principle of equal amplitudes: C. (3)

quantum electrodynamics, QED: C. (5)

QG, quantum gravity: Combination of gravitation
and quantum physics (C. 2 or Carmesin (2019c))

QP, quantum physics: Quantum physics, see C. 1

QST, quantum of spacetime, or quantum of
vacuum: Representations are quantized RGWs,
quantized spacetime scalar, quantized spacetime
tensor (C. 2)

rapid enlargement of distances: (Fig. 2.5)

rate gravity four-vector, RGV: C. (2)

rate gravity scalar, RGS: C. (2)

RGW, rate gravity wave: Carmesin (2021d) or C.
(2)

rate of the formation of vacuum: (S. 2.5.2)
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rate tensor, generalized: C. (2)

redshift: Relative increase of the wavelength z = ∆λ
λ

(C. 2)

SP, statistical physics: (C. 7)

scaled emitted transverse field: C. (3)

Schwarzschild radius RS: At this radius the escape
velocity is equal to c

SMC, Standard Model of Cosmology: (C. 1)

SMEP, Standard Model of Elementary Particles: (C.
1)

spacetime: Combination of space and time (C. 1

SRT, special relativity theory: (C. 1)

standard deviation at a sphere with radius R:
σR

standard deviation at a sphere with radius R8:
σ8 = σR8

It is also called amplitude of matter fluc-
tuations or amplitude of matter fluctuations.

time evolution of the vacuum: C. ( 1, 2)

transverse emitted field: C. (3)

unfolding, dimensional: Space unfolds when the
dimension decreases (S. 2.5.2)

universal constants: (Tab. 8.1)

vacuum: The vacuum has a volume, a density and
the velocity c. (C. 1, S. 2.5.2 or Carmesin (2021d))

ZPE: Zero-point energy of omnipresent zero-point os-
cillations (C. 1, 2, S. 2.5.2)

ZPO: Zero-point oscillations are omnipresent quan-
tum states corresponding to a ground state (C. 1,
2, S. 2.5.2)
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Figure 8.1: Program for the calculation of κemitted,⊥ and α, in the
simplest version. Upper part.

8.6 Program
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Figure 8.2: Program for the calculation of κemitted,⊥ and α, in the
simplest version. Lower part.
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Westermann, Braunschweig.

Carmesin, H.-O. (2018c). Einstein in der Schule (Teil 1) Un-
terrichtskonzepte zur allgemeinen Relativitätstheorie. As-
tronomie und Raumfahrt im Unterricht, 55(3/4):55–59.

Carmesin, H.-O. (2018d). Einstein in der Schule (Teil 2) Un-
terrichtskonzepte zur allgemeinen Relativitätstheorie. As-
tronomie und Raumfahrt im Unterricht, 55(6):33–36.

Carmesin, H.-O. (2018e). Entstehung der Raumzeit durch
Quantengravitation - Theory for the Emergence of Space,



140 BIBLIOGRAPHY

Dark Matter, Dark Energy and Space-Time. Verlag Dr.
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