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Chapter 1

Introduction

1.1 Great concepts of the microcosm

Physical theories are based on great fundamental concepts of
the microcosm.

1.1.1 Atoms

Leukippos (fifth century BC) and his student Democritos (460-
370 BC) proposed that objects are constituted by smallest in-
divisible particles, see e.g. Tsoucalas et al. (2013), Oldershaw
(1998). They proposed an essential argument: These particles
constitute the phase gas, the phase fluid and the phase solid
including the corresponding phase transitions. Dalton (1808)
established the modern concept of the atom, Fig. (1.1). How-
ever, an atom is not indivisible, as it consists of a nucleus and
one or more electrons, see e.g. Millikan (1911).

1.1.2 Elementary particles

A nucleus consists of nucleons, these are protons or neutrons,
see e.g. Rutherford (1911). Moreover, a nucleon consists of
quarks, see e.g. Gell-Mann (1964). Today, electrons and quarks
are regarded as elementary particles, many other elementary
particles have been discovered, and these are described by the
standard model of elementary particles, SMEP, see e.g.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Dalton (1808) discovered the molecules and their con-
stituents, the atoms. For instance, one molecule of carbon
monoxide (25) consists of one atom of carbon (3) and one atom
of oxygen (4), whereas one molecule of carbon dioxide (28) con-
sists of one atom of carbon (3) and two atoms of oxygen (4).

Griffiths (2008), Tanabashi et al. (2018), Zyla (2020). However,
the SMEP requires many parameters that have been determined
by observation only. So the explanation and derivation of these
parameters is an open problem of the SMEP, see (Zyla, 2020,
p. 507, line 37-41).

1.1.3 Elementary interactions

The elementary particles interact with each other by elementary
interactions. Hereby, the electromagnetic interaction, the weak
interaction and the strong interaction are especially effective.

1.1.3.1 The essential source of electromagnetism

Coulomb (1785) discovered the law of electric force, it shows
that the electric charge is the essential source of electromag-
netism. Oersted (1820) discovered electromagnetism. Faraday
(1852) introduced the concept of fields that transfer that force
from one location to another, moreover he discovered electro-
magnetic induction.

Maxwell (1865) unified the results about electromagnetic
fields, and using these, he derived the concept of electromag-
netic waves. Millikan (1911) measured the essential quantum of
electricity: the elementary charge e. That charge essentially
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corresponds to the coupling constant of electrodynamics. In-
deed, Feynman (1985) wrote that the corresponding coupling
constant of electrodynamics ’... has been a mystery ever
since it was discovered ...’. With our theory, the elementary
charge is now derived and explained, see Carmesin (2021f).

1.1.4 Electroweak unification

The electromagnetic and weak interaction have been unified.
So the standard model of the electroweak interaction,
SMEWI, has been introduced, Pich (2007). However, the
SMEWI requires parameters such as the elementary electric
charge ẽ, the couplings g and g′ and the weak angle Θ1. So
the explanation and derivation of these parameters is an open
problem of the SMEWI, see (Zyla, 2020, p. 507, line 37-41).

1.1.5 Quantum physics

Planck (1900) discovered the quantization of objects in na-
ture, introduced quantum physics, QP, including the universal
constant h. Quantum physics is essential for the SMEP and
SMEWI. However, Feynman (1967) wrote ’I think I can safely
say that no one understands quantum mechanics’. Accordingly,
a clarification is necessary.

1.2 Great cosmic concepts

Physical theories are based on great fundamental cosmic con-
cepts, describing the microcosm as well as the macrocosm.

1.2.1 Heavenly objects move according to gravity

In the geocentric concept, Earth formed the center, and nearby,
there were some heavenly bodies. Aristarchos discovered the

1Coupling constants, such as g and g′, are often named couplings, see e.g. Weinberg
(1996), Pich (2007), Griffiths (2008), Zyla (2020).
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Figure 1.2: Newton (1686) discovered the 1/r2-law of gravity.
With it, he derived elliptic and hyperbolic motions of planets,
moons and comets.

heliocentric concept, described by Archimedes (287-212 BC),
see e.g. (Archimedes, 1897, Chap. The Sand-Reckoner). In
the heliocentric concept, there was a very huge space. In that
space, the planets move around the sun, and the stars are very
far away. Using that concept, Brahe (1588) and Kepler (1627)
developed the basic observation and analysis (Kepler (1619))
of gravity, while Newton (1686) developed the law of grav-
ity including the universal constant G, measured by Cavendish
(1798), see also Carmesin et al. (2021) and Fig. (1.2). While
Newton combined his theory of gravity and mechanics with as-
sumptions about space and time, see e.g. Carmesin (2022),
Gauss (1809) isolated the essential mechanism of the gravita-
tional source providing an 1/r2-law of gravity. So he introduced
Gaussian gravity, GG, see section (2.4).

1.2.2 Equivalence principle

Galileo (1638) analyzed gravity of falling balls, Fig. (1.3).
Thereby, he discovered that two bodies fall equally fast, if fric-
tion can be neglected, see section (2.4). Accordingly, the two
bodies exhibit the same acceleration ~a = d~v/dt, which is equal
to the gravitational field G∗. This example of a motion turns
out to be prototypical for a wide class of motions in the uni-
verse, and there is a set of principles of free fall, PFF, see
chapter (2) or Carmesin (2022).
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Figure 1.3: Galileo analyzed experiments with different falling
objects at the tower in Pisa, see Galileo (1638), Schlichting
(1999). If two bodies with different masses are started at the
top at the same time, then they arrive at the same time in the
middle and near the bottom. This fact holds in the ideal case
of zero friction.

1.2.3 Space and time evolve according to relativity

Einstein (1905) applied the invariance of the velocity of light
c, in order to derive the special relativity, SR. That invariance
can be confirmed by an observation of appropriate binary stars,
see Fig. (1.4) or section (2.4). Moreover, that invariance can
be derived by a thought experiment about freely propagating
radio waves, see section (2.1.3.1). Correspondingly, we name
the invariance of the propagation of light the principle of free
propagation, PFP, alternatively, see section (2.1.3.1).

Moreover, Einstein (1915a) proposed a curvature of space-
time. With it, he elaborated a theory of general relativity, GR.
Using GR, we can partially explain the continuous expansion
of space since the Big Bang, see Einstein (1917), Wirtz (1922),
Hubble (1929) or Carmesin (2020e), Carmesin (2021a) as well
as Carmesin (2021d)).

The expansion of space corresponds to an increase of the vol-
ume, which is physically caused by an increase of the amount of
vacuum, see for instance Carmesin (2018c), Carmesin (2018b),
Carmesin (2019a), Carmesin (2021d), Carmesin (2021a). Ac-
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cordingly, we remind the discovery of the vacuum by Guericke
(1672) next.

Earth

Figure 1.4: Binary star: two stars rotate around their center of
mass. For instance, when the stars have the same distance to
Earth, they emit one light signal each. These signals arrive at
Earth simultaneously, though the emitting stars move in oppo-
site directions. Such observations confirm that light propagates
at a constant velocity relative to an observer, irrespective of the
velocity of the light emitting source relative to the observer, see
e.g. de Sitter (1913), Carmesin (2006).

1.2.4 Vacuum

Guericke (1672) invented pumps for the evacuation of objects
with an internal isolated volume. With it, he discovered rela-
tions between the atmosphere and the vacuum, Fig. (1.5). Ein-
stein (1917) introduced a cosmological constant Λ in GR that
attributes a density or energy density to the vacuum. How-
ever, that constant cannot be determined within GR. Perlmut-
ter et al. (1998), Riess et al. (2000), Spergel et al. (2007), Smoot
(2007) and many others, see e.g. in Carmesin (2021c), discov-
ered a density ρΛ or energy density of the vacuum. That density
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Figure 1.5: Guericke (1672) invented a vacuum pump and dis-
covered relations between the atmosphere and the vacuum. In
one of his experiments, more than ten horses were not strong
enough in order to separate to half spheres that enclosed an
evacuated volume.

ρΛ amounts to approximately 68 % to 75 % of the energy of
the universe, see e.g. Planck-Collaboration (2020), Riess et al.
(2021). In fact, that density ρΛ has been explained and de-
rived, see e.g. Carmesin (2018c), Carmesin (2018b), Carmesin
(2019a), Carmesin (2021d), Carmesin (2021a). Altogether, this
shows that vacuum forms physically, and it has a density ρΛ and
a volume. We name this essential fact of nature the formation
of vacuum, FV.

1.2.5 Spacetime quadruple, SQ

We summarize the four fundamental concepts as a quadruple,
we call it the spacetime-quadruple, SQ, see Carmesin (2022):

1. Principles of free fall, principles of free fall, PFF.

2. Gaussian gravity, GG.

3. Principle of free propagation, PFP, as a basis for SR. Here
we apply SR for the case of non-quantized objects, as quan-
tization is derived therefrom, see Carmesin (2022).
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4. Formation of vacuum, FV, with a corresponding volume,
see for instance Fig. (1.6) or Carmesin (2021d), Carmesin
(2021a), Carmesin (2021f).

spacetime− quadruple, SQ = {PFF,GG, PFP, FV } (1.1)

The four fundamental concepts, SQ, essentially represent grav-
ity and relativity2.

Figure 1.6: The expansion of space (solid line) is caused by an
increase of the amount of vacuum (dotted). More realistically,
vacuum propagates freely at c. The dynamics of vacuum is
derived in our theory, see e.g. Carmesin (2021d).

1.2.6 Organization of the book

In chapter (2), we summarize the basic theory of gravity, relativ-
ity and vacuum. With it, we explain useful traditional theories
of physics in Chap. (3). You will find the aim of this book in
Chap. (4), while we will derive these aims in chapters (5, 6, 7,
8, 9). The results will be discussed in Chap. (10). You can find
useful tables and a glossar in the appendix.

2We derive general relativity, GR, in Chap. (9). We do not apply GR, see e.g. Einstein
(1915a), Carmesin (1996), Hobson et al. (2006), as it is incomplete, see e.g. (Carmesin,
2021a, 2.4) or (Carmesin, 2020e, Fig. 5.7). Moreover, GR is mesoscopic, see e.g. Carmesin
(2022), Carmesin (2018b).



Chapter 2

Basic Theory

In this chapter, we summarize the basic theory of the vacuum.
That basic theory is fundamental for general relativity, GR, and
for quantum physics, QP.

Moreover, that theory has been published since Carmesin
(2017b). Furthermore, that theory has been published in a
series of books at the publisher Dr. Köster, Berlin: Carmesin
(2018d), Carmesin (2018c), Carmesin (2018b).

Thereby, these books became a scientific book series starting
with Carmesin (2019d), Carmesin (2020f), Carmesin (2020e),
Carmesin (2021d). Hereby, essential basic results about ele-
mentary particles, see Carmesin (2021a), Carmesin (2021f), and
about quantum physics have been derived, see Carmesin (2022).

Additionally, that basic theory has been published in scien-
tific journals, Carmesin (2018a), Sprenger and Carmesin (2018).

See also Carmesin and Carmesin (2018a), Carmesin (2019f),
Carmesin and Carmesin (2018b), Carmesin (2019b), Carmesin
(2019a), see e.g. Carmesin (2020b), Heeren et al. (2020).

See e.g. Carmesin and Carmesin (2020), or Schöneberg and
Carmesin (2020b), Lieber and Carmesin (2021), see additionally
Carmesin (2021c), Schöneberg and Carmesin (2021a), Sawitzki
and Carmesin (2021), Carmesin (2021g), Carmesin (2021b).

Simultaneously, the theory has been presented at scientific
conferences, see e. g. Carmesin (2017a), Carmesin and Brüning

9
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(2018), Carmesin (2019e), Carmesin (2019c), Carmesin (2020c),
Carmesin (2020d), Schöneberg and Carmesin (2020a), Herren
et al. (2020), Carmesin (2020a), Carmesin (2021e), Schöneberg
and Carmesin (2021b).

2.1 Introduction of SQ

The basic theory can be derived from four basic principles: the
principles of free fall (PFF), Gaussian gravity (GG), the prin-
ciple of free propagation (PFP), and the formation of vacuum,
see Carmesin (2022).

These four principles can be conformed by observation in a
very precise manner. Moreover, these four principles can be
conformed by thought experiments. According to this twofold
foundation, these four principles exhibit an especially convinc-
ing evidence, and additionally, these principles imply the basic
theory, which in turn implies very important theories such as
quantum physics, quantum gravity and essential findings of the
SMEP and SMEWI. As the set of these four principles char-
acterizes spacetime, essentially corresponding to gravity and
relativity, we name that set the spacetime-quadruple, SQ, see
Carmesin (2022).

In this section, we elaborate the foundation of the spacetime-
quadruple, SQ.

2.1.1 Principles of free fall

In this section, we treat principles that hold for a freely falling
object or system.

2.1.1.1 Galileo’s equivalence principle, GEP

Galileo (1638) provided a first principle of free fall, see section
(1.2.2). However, there are more interesting principles inherent
to free fall.
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2.1.1.2 Einstein equivalence principle, EEP

(Einstein, 1911, p. 898-899) used Galileo’s equivalence principle
and extended it by the following statement: A local observer
in a frame K at rest in a gravitational field ~G∗ experiences the
same laws of physics as a local observer in a frame K ′ at an
acceleration ~a′ with ~a′ = −~G∗, see Fig. (2.1). In particular, the
inertial mass and the gravitational mass are equal.

G∗ = 0

a = 0

m

(1)

~FG = m~G∗

~G∗

a = 0

(K)

~FI = −m~a

G∗ = 0

~a

(K ′)

~FI = −m~a

~FG = m~G∗

~G∗

~a

(free fall)

Figure 2.1: Frame with a mass m at a flat spring in four cases:
(1) Zero field ~G∗ = 0, zero acceleration ~a = 0 → zero force.

(K) Field ~G∗ downwards, ~a = 0 → force ~FG downwards.

(K’) ~G∗ = 0, ~a upwards → inertial force ~FI downwards.

(free fall) ~G∗ downwards, ~a downwards, whereby |~G∗| = |~a| →
gravitational force ~FG downwards, inertial force ~FI upwards,
and zero resulting force ~F = 0.

In particular, we consider a frame with a mass m at a flat
spring, see Fig. (2.1). If such a frame falls freely, then the mass
m experiences the gravitational force ~FG = m~G∗ and an inertial
force ~FI = −m~a, whereby the sum of these two forces is zero as
a result of the free fall:

~FG + ~FI = m~G∗ −m~a = 0 (2.1)
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We solve for the acceleration:

~a = ~G∗ (2.2)

Thus, the Einstein equivalence principle, EEP, includes the
Galileo’s equivalence principle. Also the EEP has been con-
firmed by many experiments, see e. g. Will (2014).

2.1.1.3 Principle of energy conservation at free fall

Energy conservation is a very general principle of nature. How-
ever, the calculated value of energy depends on the chosen
frame. For instance, if you ride on your bicycle on a road,
then your kinetic energy in the frame of the bicycle is zero,
whereas your kinetic energy is nonzero in the frame of the road.
This example shows that the principle of conservation of energy
makes sense only in a particular frame.

In what frame is the energy conserved, if a mass or dynamical
m falls freely towards a mass or dynamical mass M? According
to the local nature of the principles of the SQ, an appropriate
frame is the local frame of the field generating mass M .

This energy conservation includes the case of an isotropically
distributed mass M interacting with itself, see e.g. Carmesin
(2022).

2.1.1.4 Summarized principles of free fall, PFF

In the following, we combine Galileo’s equivalence principle,
Einstein’s equivalence principle and the principle of energy con-
servation at free fall to the principles of free fall, PFF:

PFF = {GEP,EEP, energy conservation at free fall} (2.3)

2.1.2 On Gaussian gravity

The first essential theory of gravity is Newton’s gravity, NG,
see e. g. Newton (1686). We identify four essential parts of
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NG: Firstly, according to Newton, (Newton, 1686, p. 78), space
is absolute and at absolute rest. Secondly, Newton (Newton
(1686)) used Euclidean geometry, which presumes flat space,
see e. g. Euklid (C325). Thirdly, Newton presumed absolute
time that goes on at a constant rate and in the same manner
everywhere in space, see (Newton, 1686, p. 79). Fourthly, a
mass is the source of gravity, see (Newton, 1686, p. 397) and
Gauss (1809).

The third part about time has been generalized in special
relativity, SR. The first and second part about space have been
generalized in general relativity, GR. The fourth part has been
generalized only slightly by the fact that mass is equivalent
to energy and both (mass and energy) are sources of gravity.
However, the essential part of gravity did not change: there are
sources of gravity, these are mass as well as energy.

Accordingly, we will use that fourth part of NG, whereby we
include energy as an additional source of gravity. We denote
that fourth part of NG by Gaussian gravity, GG.

The idea of Gaussian gravity is simple and robust: A mass
M generates a gravitational field ~G∗, spreading uniformly in
the vicinity. For an illustration see figure (2.2). We apply GG
locally in a freely falling system, so it is applicable without any
loss of generality. Accordingly, the field G∗ generated by a mass
M at a distance r is as follows:

|~G∗| = G ·M
r2

(2.4)

Hereby G denotes the gravitational constant (Sect. 11.1).
Gaussian gravity was discovered on the basis of the motions

of the planets as follows: Tycho Brahe observed the motions
of the planets, see Brahe and Kepler (1627). Analyzing these
results, Kepler (1619) discovered the Kepler laws of planetary
motions. Huygens (1673) discovered the law of radial force.
Newton (1686) combined the radial force with Kepler’s laws of
planetary motions and discovered Newton’s law of gravitation.
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M
G∗ field line

Figure 2.2: Mass M with field lines (dotted) and vectors (solid)

of the gravitational field ~G∗.

Note that this combination can be derived at a single page,
see e. g. (Carmesin et al., 2021, p. 108-109). Gauss (1809)
elaborated the essence of the generation of gravity by sources
such as masses.

2.1.2.1 Field G∗ as a function of the radial coordinate r

In this section, we derive the field1 in the vicinity of a mass
M . Thereby, the field is a function of the radial coordinate r,
whereby M is at the coordinate r = 0. In general, the space
can be elongated in the radial direction. Thereby, a coordinate
difference dr may be elongated to a length dL, as a function
of r. In the following we show that this has no effect on the
function G∗(r).

1Usually, we emphasize a field generating mass by a large letter M . Of course, all
masses are in principle equal in physics. The distinction between a field generating mass
and a probing mass is just a method of the analysis. It can easily be avoided by considering
both masses as field generating masses and probing masses simultaneously. The above
distinction may be appropriate, when one mass is relatively large compared to the other.
Whenever a high accuracy is essential, then this distinction is not appropriate, of course.
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There is no gravity in the horizontal direction, by definition.
Therefore there is no spatial elongation in this direction. Thus
a circle with a radius r and with its center at a field-generating
mass M at the radial coordinate r = 0 has the following
circumference U :

U = 2π · r (2.5)

Likewise, a sphere with the center at r = 0 and with the radial
coordinate r has the following surface A:

A = 4π · r2 (2.6)

With it we derive G∗:

G∗(r) = −G ·M
r2

(2.7)

2.1.2.2 Local measurements in curved spacetime

In this section, we derive physical quantities that can be mea-
sured locally in the vicinity of a mass M . In particular, the field
can be measured. An object at a coordinate r can be investi-
gated in the object’s own frame: In particular, a local observer
localized at the object can measure the radius r, the ’object’s
own time’ dτ , the velocity v = dr

dτ relative to the mass M , the
acceleration a = dv

dτ and the mass M as elaborated in Fig. (2.3).
We summarize our results:

v =
dr

dτ
and a =

dv

dτ
can be measured locally in GR (2.8)
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α

r

fixed

measurements:

bdτ1→2

dτ2→3

evaluation:

r = b
α

for j = 1 and j = 2:

drj→j+1 = rj+1 − rj
vj→j+1 =

drj→j+1

dτj→j+1

dv = v2→3 − v1→2

dτ = dτ1→2

2 + dτ2→3

2

a = dv
dτ = G∗

M = −G∗·r2
G

M

α

Figure 2.3: A local observer localized at an object at r measures:
Two hand leads provide the angle α and the arc length b. A
falling ball yields time intervals in the observer’s frame dτj→j+1.
Therefrom r, v, a, G∗ and M are evaluated.

2.1.3 On special relativity

Einstein (1905) introduced special relativity, SR, in order to
describe non-quantized objects that move at relatively high
velocity v and v ≤ c. (see also Hobson et al. (2006), Carmesin
et al. (2022), Straumann (2013), Moore (2013), or Carmesin
(2020e)).

Einstein (1905) introduced the special relativity theory,
SR, in order to describe objects with high velocity in various
inertial frames, these are frames that are not accelerated.
Thereby, Einstein assumed that the velocity of light c is an
invariant. This has been confirmed, for instance by de Sitter
(1913) or by Will (2014), see Fig. (1.4). As a consequence,
space and time are no longer invariant, instead they form a four
dimensional spacetime, see e. g. Einstein (1905) or Carmesin
(2020f), Carmesin (2020e).

For instance, if two events occur within an object resting in
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its own inertial frame, then the time interval ∆t beginning at
the first event and ending at the second event depends on the
inertial frame measuring ∆t. The shortest ∆t is measured in
the own frame of the object, while the corresponding intervals
are longer in external frames moving at a velocity v relative to
the object:

∆town ≤ ∆texternal = ∆town · γ with γ =
1

1− v2/c2
(2.9)

Thereby γ is called Lorentz factor, and v is the corresponding
velocity.

2.1.3.1 SR fully based on a thought experiment

In this section, we derive the invariance of the velocity of light c
by a thought experiment. To each star in Fig. (1.4), we add an
orbiting satellite with a radio transmitter emitting radio waves.
The corresponding frequency is f1, for the 1st transmitter, and
f2, for the 2nd transmitter. In the region Rbinary−Earth between
the binary and Earth, the frequencies are modified according to
the Doppler effect, so that f1 becomes f ′1, and f2 becomes f ′2.

These transmitters are controlled so that in Rbinary−Earth, the
waves have the same frequencies f ′1 = f ′2, phases and directions
(of polarization and of propagation). That is possible, as f1 and
f2 can be chosen small compared to the frequencies of electronics
and since radio waves can be described by classical waves.

Altogether, in Rbinary−Earth, the two waves have the same
frequencies, phases and directions. Hence the two waves form
common fields ~E and ~B in Rbinary−Earth. Thence the two waves
or the common wave have the same velocity of propagation in
Rbinary−Earth. We call this fact the principle of free propa-
gation, PFP: If two waves propagate in a homogeneous
region and have the same physical quantity constitut-
ing the amplitude, the same frequencies, phases and di-
rections (of polarization and propagation), then these
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waves exhibit the same velocity of propagation. So the
velocity of the radio waves is invariant, irrespective of the mo-
tion of the radio transmitters. Thus c is invariant. This implies
SR, see e. g. Carmesin (2020e). Indeed, thought experiments
provide the PFF, PFP and GG.

2.1.4 On general relativity

Einstein (1915a) introduced general relativity, in order to de-
scribe acceleration and gravity, in addition to special relativity
(see also Hobson et al. (2006), Carmesin (1996), Carmesin et al.
(2022), Straumann (2013), Moore (2013)).

2.1.4.1 General relativity is mesoscopic

The usual theory of GR is based on curvature. In general,
curvature can be measured in terms of radii of curvature, see
figure (2.4). For it, at least three smallest regions are necessary.
In this sense, the usual theory of GR is mesoscopic.

As GR is mesoscopic, while we derive a theory of elementary
objects, we do not use results of GR here. However, we use the
essential concept of GR that spacetime is modified by mass and
energy. If we need results in GR, we derive these results on our
own.

In fact, we derive the mesoscopic curvature of spacetime on
the basis of our microscopic description of the vacuum, see e.
g. Carmesin (2021d) or section (2.1.5). So we confirm that
spacetime is curved at a mesoscopic level.

2.1.5 Formed vacuum

We realized that the curvature of GR is a mesoscopic concept,
see figure (2.4). Accordingly, we need a really microscopic con-
cept. For it, we realize that vacuum is permanently formed,
according to the expansion of space since the Big Bang. Ac-
cordingly, we use the volume δV of the formed vacuum at one
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regions

become
points Rcurvature

S

Figure 2.4: Three smallest regions are marked by three balls (dot-
ted) and form a triangular construct (loosely dotted). The cir-
cumcircle (dashdotted) with its circumcentre S and the circum-
radiusRcurvature can be constructed. That curvature can be used
as a radius of curvature. In that manner, a radius of curvature
can be measured by using three smallest regions.

microscopic location per time δt and per existing volume dV .
Carmesin (2021d) proposed and analyzed that concept.

Thereby, formed vacuum with its corresponding volume δV
can be added and integrated. This fact is very deeply founded:
Volume can be added. An independent foundation of the addi-
tion of vacua is the addition of energies, in particular of the dark
energy, which is the energy of the vacuum. Correspondingly, the
principle of linear superposition holds for formed vacuum and
for formed volume.

Moreover, the formed vacuum propagates at the velocity of
light c, for the following reason: If the formed vacuum would
propagate at a smaller velocity vvac < c, then it would be pos-
sible to measure a velocity v < c of an object relative to the
vacuum. However, such a velocity v < c relative to the vac-
uum cannot be measured, according to SR. According to SR,
non-quantized objects do not exhibit velocities v > c.
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2.1.6 Thought experiment on formed vacuum

In this section, we show that the concept that vacuum forms in
nature can be derived on the basis of the PFF, SR and GG via a
thought experiment. For it we use the fact that the triple (PFF,
SR, GG) can be used in order to derive the Friedmann-Lemâıtre
equation about the expansion of space, see Friedmann (1922),
Lemaitre (1927), Carmesin (2018b), Carmesin (2020e). How-
ever, if the space expands, then the volume increases. So the
amount of vacuum increases. Thus there must be a permanent
net formation of new vacuum.

2.1.7 Spacetime-quadruple, SQ

Altogether, we summarize the basics of gravity and relativity by
four principles, see section (1.2.5). Thereby, each of these four
principles is based on two mutually independent foundations:
observation and thought experiment. Thus these four principles
have an exceptionally well tested, clear and evident foundation.

2.1.8 On the structure of time

In this section, we analyze the structure of time in the SQ.

We realize that the SQ does not assume any global structure of
time. Instead, the following local properties of time are inherent
to the SQ:

According to the PFF, the local time derivative of the velocity
is equal to the gravitational field, see Eq. (2.2).

According to the PFP, the velocity of light is an invariant, ir-
respective of a possible velocity of the considered frame, for an
underlying thought experiment see Fig. (1.4). This implies the
time dilation in SR, and transformations among frames corre-
spond to linear transformations in spacetime. Note that time
dilation in accelerated frames have been derived therefrom, see
e.g. Carmesin (2021d).
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According to the formation of vacuum FV, the amount of vac-
uum increases in an expanding universe.

Thus, we confirm that the SQ does not presume any global con-
cept of time or space. Instead, the SQ describes the formation
of vacuum, as a consequence, time dilation has been derived, see
e.g. Carmesin (2020e), Carmesin (2021d). If desired, these re-
sults of the SQ can be described in terms of models of spacetime
or of space and time.

Moreover, we note that the SQ includes two great special cases:
For the case of smooth transformations of spacetime, general
relativity has been derived from the SQ, see chapter (9). For
the case of a far distance limit, quantum physics, QG, has been
derived from the SQ, see Carmesin (2022). Accordingly, the SQ
includes quantum gravity, SQ.

Theorem 1 Properties of the SQ

The spacetime-quadruple, SQ, has the following properties, see
section (1.2.5 or Eq. (1.1):

(1) The SQ has a twofold foundation:

(1.1) The four principles of the SQ are empirically founded.

(1.2) The four principles of the SQ are theoretically founded by
thought experiments.

(2) The SQ does not suffer from usual restrictions:

(2.1) The SQ does not assume absolute time or space, in con-
trast to Newton’s gravity, NG, see Newton (1686).

(2.2) The SQ does not assume any continuous concept such as
curvature, in contrast to general relativity, GR, see e.g. Ein-
stein (1915a).

(2.3) The SQ does not assume a semiclassical concept such as
the principle of stationary action, PGA. That restriction is in-
herent to GR, according to the Einstein-Hilbert action, see e.g.
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Hilbert (1915), Hobson et al. (2006).

(2.4) The SQ is not restricted to classical physics. Instead, the
SQ implies quantum physics, see Carmesin (2022).

(2.5) The SQ is not restricted to gravity and spacetime. Instead,
the SQ implies quantum gravity, QG, as the SQ includes gravity
and implies quantum physics, QP, see Carmesin (2022).

(2.6) The SQ is not restricted to three-dimensional space. In-
stead, in the SQ, the dimension D ≥ 3 of space has been de-
rived by five mutually independent methods, see e.g. Carmesin
(2017b), Carmesin (2018b), Carmesin (2021d), Carmesin and
Schöneberg (2022).

(3) The SQ implies essential physical theories:

(3.1) For the case of spacetime transformations that can be de-
scribed by Riemann curvature, the SQ implies the Einstein field
equation, EFE, see chapter (9). Accordingly, the SQ implies
GR, see e.g. Einstein (1915a), Hilbert (1915).

(3.2) The SQ implies the fact of quantization. Accordingly, the
SQ implies implies quantum physics, QP, see Carmesin (2022).

(3.3) The SQ implies the elementary electric charge e, including
electromagnetism, see Carmesin (2021f).

(3.4) The SQ implies the couplings g and g′, the masses MW and
MZ, as well as the Lagrangians of the electroweak interaction,
see chapters (7, 5, 6, 8).

(4) The SQ generalizes essential physical theories:

(4.1) The SQ solves cases of incompleteness of GR, chapter (9).

(4.2) The SQ solves a mystery of quantum electrodynamics: the
origin of the elementary electric charge, (Feynman, 1985, p.
129). For details see Carmesin (2021f).

(4.3) The SQ solves essential assumptions of the standard model
of the electroweak interaction, SMEWI, see (Weinberg, 1996,
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p. 307,308): the Higgs mechanism, the weak angle and the
couplings g, g′. For details see chapters (7, 5, 6, 8).

(5) Local principles of SQ imply global structures:

(5.1) The four principles of the SQ are local rules. In particular,
the structure of spacetime is not assumed neither with respect to
dimension, nor with respect to continuous curvature, nor with
respect to discontinuous processes such as phase transitions.

(5.2) The SQ implies the formation of the vacuum, including the
density ρΛ,c.,h. of possible constant and homogeneous vacuum,
see e.g. (Carmesin, 2022, chapter 4):

ρΛ,c.,h. =
1

4πG · t2H
=

c2

4πG ·R2
H

(2.10)

Hereby, G is Newton’s constant of gravitation, tH is the Hubble
constant, and RH is the Hubble radius.

(5.3) The SQ implies the formation of the vacuum, including
the density ρΛ in our universe with its time evolution of the het-
erogeneity. For it, a relatively small correction factor has been
derived, whereby ρΛ,c.,h. is modified by that correction factor,
(Carmesin, 2021d, S. 6.6, 7.5, 8.5, 8.6), Carmesin (2021c).

(5.4) According to (5.2) and (5.3), at each region in spacetime,
the density ρΛ of the vacuum is locally present. Thus, the global
information of the light horizon is locally present. Hence, the
global information of the light horizon can in principle become
physically effective at each region of spacetime.

(5.5) The SQ implies that the average of the curvature param-
eter k is zero, see e.g. (Carmesin, 2021d, THM 32(6)):

[kj] = 0 (2.11)

(5.6) The SQ implies that the local peculiar curvature of space-
time is derived and explained by the formation of vacuum, see
e.g. Carmesin (2021d).
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(5.7) The SQ implies that the gravitational interaction is derived
and explained by the formation of vacuum, Carmesin (2021d).

(5.8) Altogether, the SQ does not assume the structure of space
or time or spacetime. Instead, the SQ derives the formation,
propagation and time evolution of vacuum, as well as the trans-
formation of vacuum into elementary particles and into funda-
mental interactions.

The space and spacetime are mathematical concepts or tools that
can be used for the investigation of invariants such as Gaussian
curvature, or for navigation, architecture construction of en-
gines, design of an antenna, for instance.

Thereby, the derived results of SQ are in precise accordance
with observation, whereby no fit is executed, see e.g. Carmesin
(2021d), Carmesin (2021a), Carmesin (2021f), for a particu-
larly detailed comparison, see Carmesin (2021c).

2.2 Each mass forms vacuum

The space expands since the Big Bang, see e. g. Wirtz (1922),
Hubble (1929), Perlmutter et al. (1998), Riess et al. (2000),
Spergel et al. (2007), Smoot (2007), Riess et al. (2021), Planck-
Collaboration (2020).

For it, each mass or dynamic mass M forms a part of the
vacuum that is permanently forming since the Big Bang, see
Carmesin (2021d). Analogously, each mass on Earth provides
a part of the attractive gravitational force that forces the moon
to its orbit around Earth.

In the next section (2.3), we show that the vacuum formed by
each mass or dynamic mass M propagates as a wave according
to a differential equation, DEQ.

In the following section (2.4), we show that the vacuum
formed by each mass or dynamic mass M and that propagates
as a wave according to the above mentioned DEQ is quantized,
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as a result of the complete dynamics of that vacuum. In par-
ticular, we derive the Schrödinger equation from the DEQ of
the vacuum. Moreover, we derived the postulates of quantum
physics from the complete dynamics of that vacuum, that is
formed by each mass or dynamic mass M , see Carmesin (2022).

Altogether, we show that the vacuum formed by each mass or
dynamic mass M causes the quantized behavior of that mass M .
Thereby, we explain the quantization of each mass or dynamic
mass M as a result of the vacuum that the mass M forms itself.

Note that the vacuum formed by each mass or dynamic mass
M on Earth does additionally propagate to space and curve the
surroundings of Earth. That curvature represents gravity and
forces the moon to its orbit around Earth. So that formed vac-
uum additionally represents the graviton proposed by Blokhint-
sev and Galperin (1934), see Carmesin (2021d).

2.3 Rate gravity wave, RGW

In this section, we summarize properties of waves that form
and propagate according to the SQ, see e.g. Carmesin (2021d),
Carmesin (2022).

2.3.1 Elongations

In this section, we summarize the description of unidirectional
elongations of space, see Fig. (2.5) and e.g. Carmesin (2021d),
Carmesin (2022).

Example of the Schwarzschild metric: As an example, we con-
sider the case of the Schwarzschild metric, discovered in the
field of general relativity, GR.

In GR, the spacetime in the vicinity of a mass M experiences
a curvature. It can be described by using polar coordinates
dx1 = r, dx2 = θ and dx3 = φ and with the time coordinate



26 CHAPTER 2. BASIC THEORY

dx0 = t. The curvature can be described with help of an un-
derlying metric tensor gij, so that the square of an infinitesimal
line element ds is as follows:

ds2 = Σ3
i=0Σ

3
j=0 gij · dxi · dxj (2.12)

In the vicinity of a mass M , the metric tensor is as follows,
whereby we use the sign convention outlined in equation (2.15):

gij =


−(1− RS

r ) · c2 0 0 0

0 1

1−RSr
0 0

0 0 r2 0

0 0 0 r2 · sin2(θ)

 (2.13)

Hereby, the metric tensor describes the Schwarzschild metric,
SM, and RS is the Schwarzschild radius:

RS =
2GM

c2
(2.14)

Note that there are two different sign conventions in the lit-
erature. Hereby, we use the sign convention described by the
Cartesian metric tensor of flat space as follows:

ηij,Cartesian =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.15)

Note that the opposite signs are used in Landau and Lifschitz
(1971) or in Stephani (1980), for instance. For an overview of
various signs used in the literature, see Hobson et al. (2006).

2.3.2 Change tensor

In this section we analyze possible unidirectional changes that
are caused by the mass M . For it we introduce a change tensor
ε̂ij, more generally. As above and as an example, we use the
metric tensor of the SM.
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dr

dA

dV = dA · dr
without mass M

δrSM

δVSM = dA · δrSM

with mass M at r = 0

Figure 2.5: Unidirectional elongation in the radial direction: A
cube with lower and upper surface dA is elongated by shifting
the upper surface by an increment δrSM .

The mass M changes the metric tensor gij, whereby there are
only diagonal nonzero elements gii. In particular, we consider
the radial direction in space only, so dθ and dφ are both zero.
So Eq. (2.12) takes the following form:

ds2 = g00 · dt2 + grr · dr2 (2.16)

As the Schwarzschild metric is stationary, we may consider dt =
0. So we derive:

ds2 = grr · dr2 (2.17)

We insert grr = 1

1−RSr
, see Eq. (2.13). So the length dr is

elongated to the length ds or dr′ as a result of the mass M as
follows:

ds =
1√

1− RS
r

· dr = dr′ (2.18)
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So the difference or displacement δrSM is as shown below:

δrSM = dr′ − dr =

 1√
1− RS

r

− 1

 · dr (2.19)

That displacement δrSM is illustrated in figure (2.5).
The derivative of such a displacement δrSM with respect to

the original length dr can be interpreted as an element of a
change tensor ε̂rr, similarly to the strain tensor in elasticity
theory, see (Landau and Lifschitz, 1975, equations 1.5, 1.8) or
(Sommerfeld, 1978, equation 11):

δrSM
dr

= ε̂rr (2.20)

Hereby, δrSM and dr are regarded as differentials in the sense
of the Leibniz calculus, see e.g. Bos (1974), Leibniz (1684) or
Fig. (2.5).

For the case of other components, the change tensor takes
the following form:

δri
drj

= ε̂ij (2.21)

Also the full change tensor is analogous to the strain tensor in
elasticity theory, see (Landau and Lifschitz, 1975, equations 1.5,
1.8) or (Sommerfeld, 1978, equation 11).

2.3.3 Change of volume

Since the discovery of the dark energy, see e.g. Perlmutter et al.
(1998), Riess et al. (2000), Smoot (2007), Spergel et al. (2007),
Planck-Collaboration (2020), it has been clear that the vacuum
has a density ρΛ. Accordingly, the volumes dV and δVSM in
figure (2.5) correspond to respective energies. So it is interesting
to analyze the relative change of the volume:

The change can directly be applied to the volume in figure
(2.5), dV = dA · dr. The change of the volume δVSM is the
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product of the area dA with the change δrSM :

δVSM
dV

=
dA · δrSM
dA · dr

=
δrSM
dr

= ε̂rr =
1√

1− RS
r

− 1 (2.22)

In general, the relative change of the volume is the sum of the
changes for each Cartesian coordinate in a D dimensional space.
So it is the sum of the diagonal elements of the change tensor:

δV

dV
= ΣD

j=1ε̂jj (2.23)

This result corresponds to respective terms in elasticity theory,
see (Landau and Lifschitz, 1975, equations 1.5, 1.6) or (Som-
merfeld, 1978, equations 18 - 20). Here we call the relative
change of the volume ε:

dV ′ − dV
dV

=
δV

dV
= ε (2.24)

We summarize our derivation as follows, see Carmesin (2022):

Proposition 1 Elongation in the SM

A mass or dynamical mass M causes an elongation δrSM,elo of
a radial coordinate distance dr. Thereby, δrSM,elo is a function
of the distance r as follows:

δrSM,elo = dr′ − dr =

 1√
1− RS

r

− 1

 · dr (2.25)

That elongation can be expressed by the radial element of the
change tensor:

ε̂rr =
δrSM,elo

dr
=

1√
1− RS

r

− 1 (2.26)
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As a consequence, the volume dV = 4πr2 · dr of the shell with
radius r and thickness dr is increased by the volume δVSM,elo =
4πr2 · δrSM,elo as follows:

ε̂rr =
δVSM,elo

dV
=

1√
1− RS

r

− 1 (2.27)

2.3.4 Dynamics of formed vacuum

In this section, we summarize the deterministic dynamics or
time evolution of the formed vacuum. For it, we summarize the
corresponding differential equation, DEQ. This DEQ has been
derived from the SQ in Carmesin (2021d) or Carmesin (2022),
and it is summarized as follows:

Theorem 2 Invariant formation of vacuum

For the case of formation of vacuum without any additional
density ρadd, the rate gravity scalar, RGS, in the DEQ

RGS = ε̇2 −G∗2/c2 = 0 (2.28)

is an invariant for the following reasons:

(1) In a frame that is at free fall, or that is not accelerated,
the only possible accelerations are particular accelerations taking
place inside the frame. A field ~G∗ of a particular acceleration
can be measured by a local observer.

(2) A possible absolute velocity cannot be measured. The DEQ
RGS = 0 is invariant with respect to a Lorentz transformation,
as the RGS is a relativistic square of a four vector, the RGV.
Accordingly, the RGS is a Lorentz scalar:

RGVi =


ε̇

G∗1/c

G∗2/c
G∗3/c

 =


∂tε

−∂r1φ/c
−∂r2φ/c
−∂r3φ/c

 thus (2.29)

RGS = Σ3
i=0Σ

3
k=0RGVi · ηi,k ·RGVk (2.30)
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(3) Corresponding inhomogeneous DEQs are as follows:

˙̂ε2
jj −

(
G∗j
c

)2

= 8πGρadd = (∂tε̂jj)
2 −

(
∂jφ

c

)2

(2.31)

˙̂ε2 −
(
G∗

c

)2

= 24πGρadd = (∂tε̂)
2 − Σ3

j=0

(
∂jφ

c

)2

(2.32)

As the rate ˙̂εj represents a tensor, in general, we represent it
with a hat.

Note that the sign of the rate is physically determined as follows:
If the average of the particular radial accelerations is positive,
then additional vacuum must be formed so that the universe
expands (Carmesin (2020e), Carmesin (2020b)).

2.3.5 Waves of formed vacuum

In this section, we analyze solutions of the DEQs in theorem (2),
see e.g. Carmesin (2021d), Carmesin (2022). For simplicity, we
abbreviate ε̂jj by ε̂j:

RGS = 8πG · ρadd with RGS = ˙̂ε2
j − (∂jφ)2/c2 (2.33)

2.3.5.1 Solutions in the vacuum

Firstly, we analyze the above DEQ for the case of zero addi-
tional density ρadd. So we analyze solutions in the vacuum.
Accordingly, we set the RGS in Eq. (2.33) equal to zero:

RGS = ˙̂ε2
j −

(
∂xjφ/c

)2
= 0 (2.34)

Similarly, the amplitudes of the corresponding waves represent
a tensor, in general, and so they are marked with a hat as well,
see e.g. Eq. (2.35). The following waves are possible solutions
of the above DEQ:

ε̂j = ε̂j,ω · exp(−i · ω · t+ i · kj · rj) + ε̂j,const. (2.35)

φ̂j = φ̂j,ω · exp(−i · ω · t+ i · kj · rj) + φ̂j,const. (2.36)
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Hereby, we apply the usual sign convention of quantum physics
in the exponent, see e.g. (Kumar, 2018, Eq. 3.2.11), (Ballen-
tine, 1998, Eq. 4.26). We insert these solutions into the DEQ
(2.34):

ε̂2
j,ω · ω2 =

k2
j

c2
· φ̂2

j,ω (2.37)

Thus the velocity of propagation of a wave in direction of the
coordinates rj or kj is as follows:

vprop =
λ

T
=
ω

kj
(2.38)

We apply this result to (Eq. 2.37):

φ̂j,ω = ε̂j,ω · c · vprop (2.39)

So we can express the wave in terms of a single amplitude ε̂j,ω.
Thus the waves are as follows, see equations (2.35, 2.36).

ε̂j(t, rj) = ε̂j,ω · e−i·ω·t+i·kj ·rj + ε̂j,const. (2.40)

φ̂j(t, rj) = ε̂j,ω · c · vprop · e−i·ω·t+i·kj ·rj + φ̂j,const. (2.41)

φ̂j(t, rj) = ε̂j,ω(t, rj) · c · vprop + φ̂j,const. (2.42)

For the case of waves with zero average, we neglect the constant:

ε̂j(t, rj) = ε̂j,ω · exp(−i · ω · t+ i · kj · rj) (2.43)

φ̂j(t, rj) = ε̂j,ω(t, rj) · c · vprop (2.44)

2.3.5.2 DEQ for stationary fields

The DEQ of the RGWs (2.34) describes the relation between a
field G∗j and a rate ˙̂εj. Physically, there are two essential cases:

1. If there is no additional source, then the field and the rate
cause each other, and an oscillatory or an exponential so-
lution occur.
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2. If the field is caused by an additional source such as a
mass or dynamic mass Mq, then the field causes the rate
according to the DEQ of the RGWs (2.34).

In the presence of a source, the field G∗j(R) at a distance R from
Mq is determined according to Gaussian gravity as follows, see
section (1.2.1):

G∗j(R) =
G ·Mq

R2
whereby j=̂radial (2.45)

In order to derive the corresponding rate of unidirectional for-
mation of vacuum, we apply the DEQ of RGWs (2.34):

˙̂εj = G∗j(R)/c =
G ·Mq

R2 · c
(2.46)

We summarize our results as follows:

Theorem 3 Properties of RGWs

The RGWs (Eqs. 2.40, 2.41 and 2.42)

ε̂j(t, rj) = ε̂j,ω · e−i·ω·t+i·kj ·rj + ε̂j,const. (2.47)

φ̂j(t, rj) = ε̂j,ω · c · vprop · e−i·ω·t+i·kj ·rj + φ̂j,const. (2.48)

φ̂j(t, rj) = ε̂j,ω(t, rj) · c · vprop + φ̂j,const. (2.49)

have the following properties:

(1) Some RGWs are plane waves or discrete or continuous
linear combinations of these. These linear combinations in-
clude waves with various symmetries, as the plane waves estab-
lish a complete orthonormal basis of a Fourier transform
including Fourier integrals, see e.g. Sakurai and Napolitano
(1994) or Teschl (2014), (Ballentine, 1998, p. 17-22).

(2) In general, the amplitudes ε̂j,ω and φ̂j,ω are tensors.

(3) RGWs propagate at a velocity vprop with vprop ≤ c. If
an RGW describes the propagation of vacuum, then its velocity
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is vprop = c, as otherwise an object with m0 > 0 could exhibit
velocity v < c relative to vacuum, in contrast to SR.

(4) In general, RGWs represent solutions of the inhomogeneous
DEQ in THM (2). Accordingly, the rates ˙̂ε can also describe
the formation of vacuum with a nonzero time average.

(4.1) RGWs can describe the formation of vacuum in the vicin-
ity of a mass Mq, whereby there occurs a stationary additional
volume as follows:

˙̂εj = G∗j(R)/c =
G ·Mq

R2 · c
with ρf,In =

G∗2

8πGc2
(2.50)

˙̂ε2
j = 8πGρf,In (2.51)

Hereby, ρf,In represents the positive or inertial density of the
field G∗, for details see Carmesin (2022).

(4.2) The RGWs describe the formation vacuum during the ex-
pansion of space and at a density ρ as follows:

˙̂ε2
j = 8πGρ and 3 ˙̂ε2

j = 24πGρ = ε̇2 =

(
δV

dV δt

)2

(2.52)

2.4 SQ explains QP and QG

Based on the SQ, the formation of vacuum, the resulting elon-
gation and the corresponding RGW can be derived, see section
(2.3). Based on the RGWs, the quantization in nature can be
derived and explained, see Carmesin (2022).

In this section, we summarize the structure of the vacuum
solutions in section (2.3). Based on these solutions, we derive
the quantization in nature.

In order to derive the velocity vprop of propagation or phase
velocity vphase, we insert Eq. (2.39) into equation (2.37):

ε̂j,ω · ω =
kj
c
· ε̂j,ω · c · vprop (2.53)
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We solve for the velocity of propagation:

ω/kj = vprop = vphase (2.54)

2.4.1 Quantization derived

In this section, we analyze RGWs that propagate at the velocity
vprop = c. So Eq. (2.54) implies the following relation:

ω

kj
= c (2.55)

Each wave that propagates at the velocity of light c, and that
is emitted during a finite interval of time from a finite source,
has the following properties:

(1) The wave forms a wave packet, as it essentially has a finite
extension in space and time.

(2) The wave packet has an energy E and a momentum p, as it
essentially has a finite extension in space and time.

(3) As the wave packet propagates at c, its energy E and its
momentum p obey the following relation:

E

p
= c (2.56)

(4) As the wave packet propagates at c, its circular frequency
ω and its wave number k obey the following relation:

ω

k
= c (2.57)

(5) So the two above fractions are equal:

E

p
=
ω

k
= c (2.58)

(6) As ω is nonzero, we can divide by ω and multiply by p. So
the following fractions are equal:

E

ω
=
p

k
=
p · c
ω
6= 0 (2.59)
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(7) In particular, the first two fractions do not depend on time,
as E and p are conserved according to the laws of conservation
of energy and momentum, and as ω and k of the RGW do not
change as a function of time:

p

k
= K(k) and

E

ω
= K(k) and K(k) = constant(k) (2.60)

Hereby, constant(k) = K(k) is the constant of quantization. It
could be a function of the wave number k, most generally.

(8) The energy E of the wave packet is constant and propor-
tional to ω, so the energy of the wave packet is quantized. Sim-
ilarly, the momentum p of the wave packet is constant and pro-
portional to k, so the momentum of the wave packet is quan-
tized. Thereby, that quantization are as follows:

E = K(k) · ω and p = K(k) · k (2.61)

That constant has been measured. It is the Planck constant h
divided by 2π. It is named reduced Planck constant (see 11.1):

K(k) = ~ (2.62)

However, we should first prove that K(k) does not depend on
k, see section (2.4.2).

2.4.2 Universality of Planck’s constant derived

In this section, we show that K(k) does not depend on k. For
it, we analyze the standard deviations or uncertainties inherent
to the wave functions.

These standard deviations are characterized by an uncer-
tainty relation as follows:

∆x ·∆p ≥ K(k)

2
=

quantization factor

2
with (2.63)

∆p =
√
〈p2〉 − 〈p〉2 (2.64)
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Hereby, ∆x is the standard deviation of x and ∆p is the stan-
dard deviation of p.

However, there is a universal uncertainty relation, which
holds for wave functions (in the corresponding Hilbert space, see
Carmesin (2022), it is a mathematical fact, see e.g. Carmesin
et al. (2020), (Sakurai and Napolitano, 1994, p. 56-57):

∆x ·∆k ≥ 1

2
with kψ = −i∂xψ(x, k) and (2.65)

∆k =
√
〈k2〉 − 〈k〉2 (2.66)

Hereby, ∆x is the standard deviation of x and ∆k is the stan-
dard deviation of k.

In particular, the product of the uncertainties ∆x and ∆k
has a minimum, which does not depend on k (in a usual mathe-
matical normalization, that minimum has the value 1/2). That
mathematical result about the (Hilbert space of) wave func-
tions does hold for the physical wave functions as well, as it is a
mathematical fact. Thus K(k)

2 in Eq. (2.63) must be a constant.
This shows that K(k) does not depend on k, q. e. d.

2.4.3 Schrödinger equation derived

In this section, we show that the DEQ of the RGW (2.34) is
the Schrödinger equation, SEQ. For it, we solve that equation
for ˙̂εj. Thereby, we choose different signs of the square roots
(so we obtain positive energy):

∂tε̂j(t, rj) = −∂jφ̂(t, rj)/c (2.67)

In order to find the wave equation, we apply the solution in Eq.
(2.44),

φ̂j(t, rj) = ε̂j,ω(t, rj) · c2, (2.68)

so we derive:

∂tε̂j(t, rj) = −∂j ε̂j(t, rj) · c (2.69)
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For comparison, the Schödinger equation is as follows, see
e.g. Carmesin (2022):

i~∂tψ(t, rj) = −i · ~ · c · ∂rjψ(t, rj) (2.70)

In fact, the above Eq. (2.69) is already mathematically equiv-
alent to the Schrödinger equation. However, the square of the
wave function should be proportional to the energy density
uf,In, as the energy density uf,In(~R, t) is proportional to the

probability of finding the object at (~R, t), see Carmesin (2022).
Moreover, the wave function should have the physical dimension
or unit [ψ] = 1. For that purpose, we apply the time derivative
to Eq. (2.69), and we multiply with a normalization factor of
time tn. That factor tn is determined so that the wave function
ψ has an amplitude corresponding to the respective physical
situation under investigation. In particular, the sum or integral
of all probabilities or probability densities is normalized to one:

∂t ˙̂εj(t, rj) · tn = −∂rj ˙̂εj(t, rj) · tn · c (2.71)

In order to show that the DEQ of the RGW is equivalent to the
Schödinger equation, we multiply Eq. (2.71) by i~:

i~∂t ˙̂εj(t, rj) · tn = −i~∂rj ˙̂εj(t, rj) · tn · c (2.72)

We conclude that the DEQ of the RGW (2.72) is equivalent
to the Schödinger equation (2.70), whereby we identify the nor-
malized unidirectional rate ˙̂εj(t, rj)·tn with the normalized wave
function ψ(t, rj) · fn, see figure (2.5), whereby fn denotes a nor-
malization factor of a wave function ψ:

˙̂εj(t, rj) · tn = ψ(t, rj) · fn (2.73)

In order to make the Schödinger equation (2.72) even more ob-
vious, we apply the momentum operator p̂j = −i~∂rj , the oper-

ator of kinetic energy Êkin = p̂rj ·c = −i~∂rj ·c and the operator

of energy Ê = i~∂t, see e.g. Carmesin (2022):

Ê ˙̂εj(t, rj) · tn = p̂j ˙̂εj(t, rj) · tn · c = Êkin
˙̂εj(t, rj) · tn (2.74)
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2.4.4 Objects with vprop < c

An object with a velocity vprop < c has a rest mass m0. Accord-
ing to SR, the energy momentum relation holds:

E2 = p2c2 +m2
0 · c4 (2.75)

In order to obtain the Schödinger equation, we apply the root:

E =
√
p2c2 +m2

0 · c4 (2.76)

In many applications, the non-relativistic approximation of the
above root is applied. Usually, the linear order in p/(m0c) is
used:

E=̂m0 · c2 +
p2

2m0
(2.77)

It is convenient to use the kinetic energy Ekin,non−relativistic =
E −m0 · c2:

Ekin,non−relativistic=̂
p2

2m0
(2.78)

In order to obtain the Schödinger equation, we apply the corre-
sponding operators. In particular, we use Eq. (2.78), we insert
the operator p̂ for the momentum p, see e.g. Carmesin (2022),
we insert the operator Ê for the energy Ekin,non−relativistic, see
e.g. Carmesin (2022). Moreover, we multiply by the wave func-
tion:

i~∂tψ(t, rj) = − ~2

2m0
∂2
rj
ψ(t, rj) (2.79)

This is the non-relativistic Schödinger equation, see for instance
Carmesin (2022), whereby we identify the normalized unidirec-
tional rate ε̇j(t, rj) · tn with the normalized wave function ψ ·fn:

ε̇j(t, rj) · tn = ψ(t, rj) · fn (2.80)

We summarize our results as follows:
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Theorem 4 Emergence of quanta

(1) Each wave that propagates at the velocity of light vprop = c,
and that is emitted at a finite interval of time and from a finite
source, has the following properties:

(1.1) The wave forms a wave packet with an energy E, a mo-
mentum p, a circular frequency ω and a wave number k.

(1.2) The wave packet is quantized as follows:

E = K · ω and (2.81)

p = K · k with (2.82)

K = universal constant of quantization (2.83)

Hereby, the universal constant of quantization K does not de-
pend on E or ω, K has been measured, and K is Planck’s
constant h divided by 2π, so K is the reduced Planck constant
~ = h

2π = K, see table (11.1).

(1.3) If that wave is a rate gravity wave, RGW, it obeys the
Schödinger equation, SEQ. Hereby, the normalized wave func-
tion is equal to the normalized rate of the unidirectional relative
change of the volume of vacuum, see figure (2.5):

˙̂εj(t, rj) · tn = ψ(t, rj) · fn (2.84)

i~∂t ˙̂εj(t, rj) · tn = −i~∂rj ˙̂εj(t, rj) · tn · c (2.85)

(2) Each RGW that propagates at the velocity of light vprop < c,
and that is emitted at a finite interval of time and from a finite
source, has the following properties:

(2.1) The RGWs are quantized. From the above one dimen-
sional SEQ, the three dimensional SEQ is constructed as usual,
see e.g. Sakurai and Napolitano (1994), Ballentine (1998), Ku-
mar (2018).

(2.2) The RGW obeys the Schödinger equation, SEQ. Hereby,
the normalized wave function is equal to the normalized rate of
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the unidirectional relative change of the volume, see figure (2.5).
For v/c << 1, the SEQ is as follows:

ε̇j(t, rj) · tn = ψ(t, rj) · fn (2.86)

i~∂tψ(t, rj) = − ~2

2m0
· ∂2

rj
ψ(t, rj) (2.87)

Hereby, m0 is the rest mass of the described quantum object.

All results derived in this theorem are based on the spacetime-
quadruple.

Moreover, Carmesin (2022) derived the postulates of quan-
tum physics, QP, in order to show that SQ does indeed imply
QP. Furthermore, Carmesin (2022) derived, explained and clar-
ified many properties of quantum physics.

2.5 Mass forms via QG

In this section, we summarize how mass forms from vacuum.
That summary is based on derivations and explanations ob-
tained on the basis of the SQ. The findings have been con-
firmed by precise accordance between derived and observed val-
ues, whereby no fit has been used.

2.5.1 Gravity can fold vacuum

The attractive gravity tends to decrease the distance between
masses or dynamical masses. As a consequence, the density in-
creases. However, when the largest possible density, the Planck
density ρP is reached, then the masses cannot be moved towards
each other in space. as a consequence, gravity increases the di-
mension D of space, so that the distance decreases, though the
density remains the same, see Fig. (2.7). That change of dimen-
sion takes place at dimensional phase transitions at respective
critical densities ρ̃D,c.
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Figure 2.6: Time evolution of the vacuum enclosed in the
present-day light horizon Rlh(t): For Rlh(t) ≈> 10−5 m, three-
dimensional space became stable. At smaller Rlh(t), dimen-
sional phase transitions occurred at critical densities ρ̃D,c.

The density ρΛ of vacuum contains information about Rlh(t)
and about vacuum at all dimensions D ≥ 3. So five-dimensional
vacuum can form at any time: thereby masses and charges of
elementary particles form from vacuum via a local dimensional
phase transition.

For instance, based on the SQ, the dynamics of the vacuum has
been derived. With it, the formation of the mass of the Higgs
boson, mH , as well as the formation of the elementary electric
charge has been derived, see e.g. Carmesin (2021d), Carmesin
(2021a), Carmesin (2021f). Hereby, precise accordance with ob-
servation has been achieved, whereby no fit has been executed.

Thus, the mechanisms of the electric charge and electromag-
netic interaction have been derived and explained.
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Theoretical evidence for dimensional phase transitions: the di-
mensional phase transitions have been derived with five mutu-
ally independent methods:

Carmesin (2017b) analyzed these phase transitions using a van
der Waals type model, see also for instance Carmesin (2018b),
Carmesin (2019d), Carmesin (2020e).

Moreover, these dimensional phase transitions have been con-
firmed by the time evolution of dark energy, see e.g. Carmesin
(2018c), or in Carmesin (2018b), Carmesin (2019d), Carmesin
(2021d), Carmesin (2021a).

Furthermore, these phase transitions have been confirmed by
a Bose gas model, see for instance Carmesin (2021d), Sawitzki
and Carmesin (2021).

Additionally, these phase transitions have been confirmed by an
analysis of the connectivity of locations in space, see Carmesin
(2021d).

Moreover, these phase transitions have been confirmed by a
droplet model, see Carmesin and Schöneberg (2022).

Empirical evidence for dimensional phase transitions: In fact,
Lohse et al. (2018) as well as Zilberberg et al. (2018) discovered
physics taking place at higher dimension D > 3 in experiments
utilizing electrons and in other experiments using photons.

Guth (1981) discovered the horizon problem. That problem has
been solved on the basis of the dimensional phase transitions,
see e.g. Carmesin (2019d), Schöneberg and Carmesin (2021a),
Carmesin and Schöneberg (2022).

Using dimensional phase transitions, the energy problem has
been solved, Carmesin (2020e).

Utilizing dimensional phase transitions, the flatness problem
has been solved, Carmesin (2019d), Carmesin (2021d).
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Figure 2.7: 216 magnetic balls model local objects or observable
regions at high density and illustrate the relation between the
distance and the dimension D: If the dimension increases from
two (right) to three (left), then the largest distance decreases.
More generally and conversely, a decrease of the dimension D
implies an increase of the largest distance.

On the basis of dimensional phase transitions, the formation of
mass and of charge have been derived and explained, Carmesin
(2021a), Carmesin (2021f).

The dimensional phase transitions from D = 4 to D = 3 has
probably been observed by Ratzinger and Schwaller (2021), see
(Carmesin, 2021a, p. 169-170) or section (8.7.2.1).

2.5.2 Cosmic unfolding

In the early universe, the present-day light horizon Rlh took its
smallest possible value, twice the Planck length LP , see table
(11.3), at the dimension Dhorizon = 301 or Dhori = 301, see e.g.
Carmesin (2017b), Carmesin (2019d), Carmesin (2021a). This
dimension Dhori = 301 is named dimensional horizon.

Then vacuum formed and caused the well known expansion
of space since the Big Bang. As a consequence, the density de-
creased. Whenever the density achieved a critical density, then
the respective dimensional phase transition took place, whereby
the distances increased, see Fig. (2.7).

Thus, a sequence of dimensional phase transitions took place,
we name that sequence the cosmic unfolding. That sequence
has been calculated in detail, see for instance Carmesin (2019d),
Carmesin (2021a). The phase transitions of the cosmic unfold-
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Figure 2.8: Zero-point energy ZPEΛ,D of the dark energy as a
function of the dimension of the space D.

ing are marked by open circles in Fig. (2.6). The energies of
the corresponding quanta of the vacuum are zero-point energies
ZPEΛ,D. These have been derived, see e.g. Carmesin (2018b),
Carmesin (2021a), and these ZPEΛ,D are illustrated in Fig.
(2.8).

2.5.3 Availability of quanta of cosmic unfiolding

In this section, we show that a present-day quantum of vacuum,
ZPEΛ,D=3, experiences in its nearest vicinity the full structure
(or information) about all quanta of vacuum ZPEΛ,D of the cos-
mic unfolding. For additional details, see section (10.3). Thus, a
present-day quantum of vacuum ZPEΛ,D=3 can take each quan-
tum of vacuum ZPEΛ,D of the cosmic unfolding as an excitation
state. The derivation is as follows:

(1) The dimensional horizon is the solution of the following
equation, see ((Carmesin, 2019d, Eq. 2.163)):

ρ̃r,Dhori
= 2

4(Dhori−3)
3 · 1

4 · R̃4
lh · ρ̃r,t0

(2.88)
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Hereby, all quantities with a tilde are noted in Planck units, see
table (11.3), R̃lh represents the light horizon, ρ̃r,Dhori

marks the
density of radiation at the dimensional horizon, and ρ̃r,t0 is the
present day density of radiation.

(2) The density ρ̃r,Dhori
in (1) is equal to the critical density

ρ̃Dhori,c of Dhori. It is a consequence of the laws of nature, so
that information is in principle present or effective at a present-
day quantum of vacuum, ZPEΛ,D=3.

(3) The present day density of radiation in (1) is present or
effective in the vicinity of a present-day quantum of vacuum,
ZPEΛ,D=3.

(4) The information about the value of the light horizon R̃lh is
inherent to the density of vacuum ρΛ, see THM (1, part (5.4)).
The density of vacuum ρΛ is present or effective in the vicin-
ity of a present-day quantum of vacuum, ZPEΛ,D=3. So the
information of the value of the light horizon R̃lh is present or
effective in the vicinity of a present-day quantum of vacuum,
ZPEΛ,D=3.

(5) According to items (1), (2), (3) and (4), the information of
the value of the dimensional horizon Dhori is present or effective
in the vicinity of a present-day quantum of vacuum, ZPEΛ,D=3.

(6) As a consequence of the dimensional phase transitions from
D = Dhori = 301 towards a dimension D ≥ 3, the universe
and the light horizon increased by the dimensional enlargement
factor as follows, see (Carmesin, 2021a, Eq. (7.2)):

ZDhori→D = 2(Dhori−D)/D (2.89)

(7) According to items (5) and (6), the information of the values
of the dimensional enlargement factors ZDhori→D is present or
effective in the vicinity of a present-day quantum of vacuum,
ZPEΛ,D=3.

(8) The energy of a quantum of vacuum of the cosmic unfolding
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is as follows, see (Carmesin, 2021a, Eq. (7.4)):

ZPEΛ,D = EDhori
· D − 1

ZDhori→D · 300
(2.90)

(9) According to items (7) and (8), the information of the energy
of each quantum of vacuum of the cosmic unfolding is present
or effective in the vicinity of a present-day quantum of vacuum,
ZPEΛ,D=3.

Thus we derived the desired result, and we summarize it as
follows:

Proposition 2 Excitation states via cosmic unfolding

(1) The present-day quantum of vacuum, ZPEΛ,D=3, experi-
ences in its vicinity the full information of all quanta of vacuum
of the cosmic unfolding, ZPEΛ,D.

(2) So the quanta of vacuum of the cosmic unfolding, ZPEΛ,D,
are possible excitation states.

(3) The present-day quantum of vacuum, ZPEΛ,D=3, experi-
ences the light horizon Rlh, see THM (1). The size of a system
that performs dimensional phase transitions determines the cor-
responding enlargement factors and zero-point energies, as il-
lustrated in Fig. (2.7). So the quanta of vacuum of the cosmic
unfolding, ZPEΛ,D, are the only possible excitation states
of cosmic unfolding.

(4) Additional excitation states are caused by transitions to
various symmetries described by tensors, see Carmesin (2021a).

(4.1) The most simple excitation states are unidirectional and
longitudinal quanta, see Carmesin (2021a).

(5) In addition, there occur excitation states according to har-
monic oscillations, described by ladder operators, see
(Carmesin, 2021d, chapter 6), Carmesin (2021a).
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(6) If an object in three-dimensional vacuum is formed from the
most simple excitation states (unidirectional and longitudinal
quanta), then the object is constituted by three quanta (in order
to fill D = 3-vacuum).

(7) Objects in (6) derive and explain the formation of masses:

(7.1) If the objects in (6) have the lowest energy, then the objects
are excitation states of transitions in (4) and of harmonic oscil-
lations, described by ladder operators in (5), and then these ob-
jects provide the sum of masses of the neutrinos, see Carmesin
(2021a).

(7.2) If the objects in (6) are constituted by excitation states to
dimension four, then the objects exhibit relatively low stability,
see Carmesin (2021a).

(7.3) If the objects in (6) are constituted by excitation states to
dimension five, then these objects provide the mass mH of the
Higgs boson, see Carmesin (2021a).

2.6 Charge forms via QG

In this section, we summarize the mechanism of the formation
of the elementary electric charge:

(1) An object in PROP (2, number (3)) is constituted by a
triple of longitudinal and unidirectional quanta.

(2) Each quantum of the triple in (1) causes forced oscillations
at the other two quanta of the triple, see Carmesin (2021f).

(3) The forced oscillations in (2) can form the elementary elec-
tric charge, see Carmesin (2021f). That charge gives rise to
electromagnetism, see Carmesin (2021f).



Chapter 3

Explanation of Traditional
Theories

In this chapter, we explain useful traditional theories by appli-
cation of my new and basic theory, see chapter (2).

3.1 Principle of Least Action, PLA, in QP

Based on the SQ, we derived the rate gravity waves as well
as quantum physics, QP. In quantum physics, an object is de-
scribed by a wave functions ψ, see e.g. Sakurai and Napolitano
(1994), Ballentine (1998), Kumar (2018), Carmesin (2022). In
this section, we analyze a particular semiclassical limit of QP.

We consider a freely propagating quantum object. So it is
described by a plane wave. As usual, we name the wave vector
~k, the circular frequency ω and the time t. So the wave function
can be expressed with a normalization factor fn as follows:

ψ(t, ~x) = fn · exp(i · ~k · ~x− i · ω · t) with (3.1)

~k = ~p/~ and ω = E/~ (3.2)

Hereby, ~p is the momentum and E is the energy of a corre-
sponding quantum, Carmesin (2022). Moreover, ~ = h

2π is the
reduced Planck constant, while h is Planck’s constant, see table

49
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(11.1). Thus we derive:

ψ(t, ~x) = fn · exp

(
i · ~p · ~x− E · t

~

)
(3.3)

In the above Eq., the fraction is a real number, Planck’s con-
stant h represents an action S, and so the numerator represents
an action S as well:

S(t, ~x) = ~p · ~x− E · t with (3.4)

ψ(t, ~x) = fn · exp(i · S(t, ~x)/~) (3.5)

3.1.1 Semiclassical path ~x(t)

If a quantum object propagates freely from a point A to a point
B, and if the quantum object can be described by one semiclas-
sical path ~x(t), and if these paths start at the point A and end
at the point B, then the action S(t, ~x(t)) and the wave function
ψ(t, ~x) can be calculated for each path as follows, as Eq. (3.4)
can be applied:

S(t, ~x(t)) = ~p · ~x− E · t with (3.6)

ψ(t, ~x(t)) = fn · exp(i · S(t, ~x(t))/~) (3.7)

Moreover, we identify the ratio S(t, ~x(t))/~ by the phase φ:

φ(t, ~x(t)) = S(t, ~x(t))/~ with (3.8)

ψ(t, ~x(t)) = fn · exp(i · φ(t, ~x(t))) (3.9)

3.1.2 Fermat’s Minimum Principle

In this section, we analyze how light propagates from a point A
to a point B.

3.1.2.1 Reflection

Hero of Alexandria (ca. 10 AD - 70 AD) as well as Chambre
(1662) realized that light takes that path from A to B, that
requires the least time, whenever the light propagates through a
homogeneous medium, whereby the light may also be reflected.



3.1. PRINCIPLE OF LEAST ACTION, PLA, IN QP 51

Figure 3.1: Huygens (1690) provided essentially the above illus-
tration of the refraction of light. Moreover, he realized that the
angle of refraction and Snell’s law of refraction can be explained
on the basis of two assumptions: The light takes the path from
A to B that requires the least time, and there are appropriate
velocities of propagation of light in the two media.

3.1.2.2 Refraction: Fermat’s Minimum Principle

Fermat (1657) analyzed the case of refraction of light propagat-
ing from one medium I to another medium II, see Fig. (3.1).
He noted that the angle of refraction can be explained on the
basis of two assumptions:

(1) If light propagates from a point A to a point B, then it
takes the path that requires the least time. This rule is called
Fermat’s Minimum Principle, see e. g. Born and Wolf
(1980), Rojo and Bloch (2018), Erb (1992).

(2) There are appropriate velocities vI and vII of propagation
of light in the two media.

3.1.2.3 Proof of Fermat’s Minimum Principle

Fermat’s Minimum Principle can be proven on the basis of wave
theory, see (Born and Wolf, 1980, S. 3.3.2). Thereby, (Born and
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Wolf, 1980, S. 3.3.2) derives the following:

If a wave with a wavelength λ propagates freely, and if the wave
can take paths ~x(t), and if these paths start at the point A and
end at the point B, and if the limit λ to zero is applied, then
the light takes that path x(t) that requires the least time.

3.1.3 Application of Fermat’s Principle to QP

A quantum object is described by a wave function, see e. g. Ku-
mar (2018), Carmesin (2022). If the object propagates freely,
and if the object takes one path x(t) in an appropriate semiclas-
sical limit, then Fermat’s Minimum Principle can be applied to
the wave function.

Firstly and consequently, and in the limit λ to zero, the
quantum object takes that path x(t) that requires the least
time.

Secondly, the path that requires the least time does also re-
quire the least phase φ, as the frequency of a freely propagating
object is constant, see Eqs. (3.8, 3.9).

Thirdly, the path that requires the least action S, as the
phase φ is equal to the action divided by ~, see Eqs. (3.6, 3.7,
3.8, 3.9).

We summarize:

(1) If a quantum object propagates freely, and if the object
takes one path x(t) in an appropriate semiclassical limit, and if
the path starts at a point A and ends at a point B, then the
object takes that path x(t) that has the least action S(t, x(t))
among all conceivable paths from A to B, see Eqs. (3.6, 3.7).

(2) The above rule represents the Principle of Least Action,
PLA1.

1Such a principle is described in (Landau and Lifschitz, 1965, § 6) or Rojo and Bloch
(2018).
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3.1.4 Lagrangian

In this section, we represent the action in terms of an integral∫
...dt of a Langange function L or a Lagrangian L as fol-

lows, see e.g. Landau and Lifschitz (1960), for a mechanical
system

S(t, x(t)) =

∫ t2

t1

L(x(t), ẋ(t))dt (3.10)

see e.g. (Landau and Lifschitz, 1971, § 27), for the case of the
electric field ~E and the magnetic field ~H:

Sf =

∫ t2

t1

Lfdt with (3.11)

Lf =
1

8π
·
∫
dV ( ~E2 − ~H2) (3.12)

A Lagrangian of a field is usually marked by a calligraphic L.
Altogether, the SQ implies RGWs and quantum physics, QP.
Moreover, for the case of semiclassical paths in a system de-
scribed by QP, the Principle of Least Action, PLA, including a
corresponding description by a Lagrangian are further implica-
tions of the SQ.

Next we analyze objects that propagate under the influence of
an interaction, instead of propagating freely. For it, we use the
Lagrangian, and we apply the Principle of Gauge Invariance,
PGI, see e.g. (Pich, 2007, S. 2), (Griffiths, 2008, S. 10.3).

3.2 Principle of Gauge Invariance, PGI

Using the basic theory, see chapter (2), we derived quantum
physics. For it, we derived the semiclassical description of a
freely propagating quantum object in terms of a Lagrangian
L0, see section (3.1). However, a quantum object may interact,
more generally. Accordingly, we show how the Lagrangian L0
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can be supplemented by additional terms that represent the
interaction of the object.

For it, we summarize the Principle of Gauge Invariance, PGI,
and its application, see e. g. (Pich, 2007, S. 2), (Griffiths,
2008, S. 10.3). A typical Lagrangian of an object with a mass
parameter m is as follows, see (Griffiths, 2008, Eq. 10.26):

L0 = i~cΨcc(x)γµ∂µΨ(x)−m · c2Ψcc(x)Ψ(x) (3.13)

Hereby, Ψcc is the conjugate complex of Ψ, γµ is a matrix in
Dirac theory, ∂µ represents a partial derivative in spacetime,
whereby the sum convention is applied.

In the traditional theory of quantum physics, see e. g. Saku-
rai and Napolitano (1994), Ballentine (1998), Griffiths (2008),
Kumar (2018), the phase has no physical meaning. So the wave
function may be multiplied by a local or global phase factor as
follows:

ΨΘ = Ψ · exp(i ·Θ(x)) local factor (3.14)

ΨΘ = Ψ · exp(i ·Θ) global factor (3.15)

Hereby, Θ and Θ(x) are some real numbers. Thus the derivative
in Eq. (3.13) is as follows:

∂µΨΘ(x) = ∂µ(Ψ(x) · exp(i ·Θ(x))) (3.16)

= exp(i ·Θ(x)) · (∂µ + i∂µΘ(x))Ψ(x) (3.17)

However, the above derivative enters the Schrödinger equa-
tion, SEQ. The SEQ describes the dynamics of the vacuum,
see Carmesin (2022). So the local phase Θ(x) enters the SEQ.
Thus Θ(x) destroys the translation invariance of the SEQ and
of the vacuum, which is not physical, as the vacuum itself is
translation invariant. Hence, the local phase Θ(x) must be com-
pensated in the SEQ. This requirement is named Principle of
Gauge Invariance, PGI. For it, a correction term must be
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added. This is achieved by a covariant derivative as follows:

DµΨ(x) = [∂µ + i · q · Aµ(x)] ·Ψ(x) with (3.18)

Aµ,Θ(x) = Aµ(x)− 1

q
∂µΘ(x) (3.19)

Hereby, Aµ represents the vector potential and the electric po-
tential, see e. g. Landau and Lifschitz (1971), Aharonov and
Bohm (1959). In order to test the correction term, we apply
Eq. (3.16) to Eq. (3.18):

Dµe
iΘ(x)Ψ(x) = eiΘ(x)[∂µ + i∂µΘ(x) + iqAµ,Θ(x)]Ψ(x) so

(3.20)

Dµe
iΘ(x)Ψ(x) = eiΘ(x)[∂µ + iqAµ(x)] ·Ψ(x) (3.21)

Hereby, we used Eq. (3.19). Next, we apply eiΘ(x)Ψ(x) =
ΨΘ(x):

DµΨΘ(x) = [∂µ + iqAµ(x)] ·ΨΘ(x) (3.22)

The above transformed derivative is the same as the original
derivative in Eq. (3.18). So our test confirms the correction
term, and the Principle of Gauge Invariance, PGI is obeyed.
More generally, the phase factor exp(iΘ(x)) can be replaced by
a transformation of the group SU(2) or SU(3), see e. g. (Pich,
2007, S. 2), Griffiths (2008).

This example shows how the electromagnetic interaction can
be derived from the PGI, if the charge q is known, see e. g.
Feynman (1985), Carmesin (2021f).

Altogether, the SQ implies the PLA in an appropriate semi-
classical limit, which in turn implies the PGI, in the framework
of traditional quantum theory with phases without physical
meaning. The precise relation to the theory of vacuum, includ-
ing physical interpretation, is elaborated in the main chapters
of the book.
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3.3 SMEP

Using the basic theory, see chapter (2), we derived the mass of
the Higgs boson, which is underlying for the mass of the elec-
tron, for instance, according to the Higgs mechanism. Moreover,
we derived the sum of the masses of neutrinos.

In this section we apply the pair (electron, electronic neu-
trino), in order to present a short description of the standard
model of elementary particles, see e.g. Tanabashi et al. (2018).
The model is essentially constituted by three generations, see
e.g. Kobel et al. (2017). These are basically understood by the
beta decay.

3.3.1 β-decay

In the beta decay, a neutron, n, decays into a proton, p, an
electron, e− and an electronic antineutrino, ν̄e:

n→ p+ ν̄e + e− (3.23)

On the level of quarks, the beta decay can be modeled by the
decay of a down quark, d, into an up quark, u, an electron, e−

and an electronic antineutrino, ν̄e:

d→ u+ ν̄e + e− (3.24)

3.3.2 Isospin - pairs

In the above reaction Eq. (3.24), we transfer the antineutrino
from the products to the educts by changing it to a neutrino:

d+ νe → u+ e− (3.25)

This is interpreted by a transformation of a down quark into
an up quark combined with a transformation of an electronic
neutrino into an electron. Correspondingly, the down quark
and the up quark are interpreted as two states such as two spin
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states. Accordingly, a new isospin has been introduced, and
the down quark has isospin Iz = −1/2, while the up quark has
isospin Iz = 1/2. So these two quarks form a pair:(

u
d

)
(3.26)

Similarly, and the electronic neutrino has the isospin Iz = 1/2,
while the electron has the isospin Iz = −1/2, see Eq. (3.29).
Thus, these two leptons constitute another isospin pair:(

νe
e−

)
(3.27)

As these two isospin pairs are combined in the beta decay,
they are combined to the following quadruple:

(
u

d

)
(
νe
e−

)
 (3.28)

3.3.3 Isospin

The usual spin states are related to rotations, and these are rep-
resented by the special (with determinant one) orthogonal group
in three dimensions, the SO(3). Similarly, the isospin states are
related to transformations, and these are again represented by
a group, the special unitary group in two dimensions, SU(2).

3.3.4 Generations

The quadruple in Eq. (3.28) is a first quadruple that had been
developed in several steps: Pauli proposed the existence of the
neutrino as a part of the beta decay in 1930. That neutrino has
been directly observed since 1953. The quark model has been
proposed around 1960.
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Later, two similar quadruples have been discovered. Thereby
the top quark was discovered in 1993 and completed these three
quadruples. The numbers of these three quadruples are called
generations, see Eq. (3.30). The particles of the second and
third generation in Eq. (3.30) are the charm quark, c, strange
quark, s, top quark, t, bottom quark, b, muon, µ, tauon, τ as
well as corresponding neutrinos νµ and ντ .

gen.1(
u
d

)
(
νe
e−

)
→


Iz(
1
2

−1
2

)
(

1
2

−1
2

)
→


q(
2
3

−1
3

)
(

0
−1

)
 (3.29)


gen.1(
u

d

)
(
νe
e−

)
→


gen.2(
c

s

)
(
νµ
µ

)
→


gen.3(
t

b

)
(
ντ
τ

)
 (3.30)

In addition to these particles, the standard model contains
bosons that transmit interactions:

The weak interaction is transmitted by W bosons, W+, W−

and W 0 (also called Z-boson, Z represents zero). The electro-
magnetic interaction is transmitted by virtual photons. The
strong interaction is transmitted by gluons. Beyond the stan-
dard model is the hypothetical graviton, see Blokhintsev and
Galperin (1934), Carmesin (2021d). The masses of most par-
ticles of the standard model are based on the Higgs boson, see
e.g. (Peskin, 2015, p. 9-10) or Tanabashi et al. (2018).

3.3.5 Two additional symmetries

We remind that the isospin states form pairs and are related
to transformations that represent a group, the special unitary
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group in two dimensions, the SU(2). Similarly, the quarks u,
d and s form a triplet and are related to transformations that
represent a group, the special unitary group in three dimensions,
the SU(3). That group can explain several elementary particles
that are formed from the quarks u, d and s.

An additional symmetry is related to the electromagnetic
interaction. An effect of that interaction can be modeled by a
change of a phase of a complex number. As numbers represent
one dimension, the corresponding group is the special unitary
group in one dimension, the SU(1). Altogether, symmetries
inherent to elementary particle physics are described by using
the groups SU(1), SU(2) and SU(3) including their combina-
tions. Possible relations to higher dimensional groups are being
investigated since many decades.

3.3.6 Mixing

The system of elementary particles (Eq. 3.30) has been devel-
oped according to reactions such as the beta decay and accord-
ing to symmetries of SU(1), SU(2) and SU(3). However, the
neutrinos of the three generations νe, νµ and ντ can periodically
transform into each other, that phenomenon is called neutrino
oscillation, see e.g. Tanabashi et al. (2018). Correspondingly,
these neutrinos νe, νµ and ντ are modeled as linear combinations
of underlying neutrinos ν1, ν2 and ν3. That linear combination
is called neutrino mixing and it is described by a mixing matrix
U , see e.g. (Tanabashi et al., 2018, S. 14).

Similarly, the masses of the six quarks of the three genera-
tions (see Eq. 3.30) are derived on the basis of a mixing matrix,
called VCKM , see e.g. (Tanabashi et al., 2018, S. 12).

3.4 SMEWI

In this section, we explain and summarize the Standard model
of the weak interaction, SMEWI, see Pich (2007).
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3.4.1 Explanation of two couplings

Using the basic theory, see chapter (2), we derived the elemen-
tary electric charge. That derivation shows already, that the el-
ementary charge gives rise to a two-dimensional vector space
of charges, see Fig. (6.2). Using that vector space of charges,
we can directly understand the traditional description of the
SMEWI, which uses two couplings, which correspond to two
charges.

3.4.2 Explanation of the SU(2)-group of isospin

As we derived two components of the elementary electric charge,
Carmesin (2021f), there is a two-dimensional vector space of
charges, see Fig. (6.2).

Thereby, a quantum object has a charge according to its own
dynamics, see Carmesin (2021f). That charge of the quan-
tum object is represented in the two-dimensional vector space
of charges. Since that charge of the quantum object is gener-
ated by the own dynamics alone, that charge is not influenced
from outside, and the object generates freely the corresponding
charge vector in the vector space of charges. This shows that
there is no influence at all from outside, when the object gener-
ates its charge state. Accordingly, the object experiences an
isotropic or symmetric two-dimensional charge space,
in which the object can generate its charge freely according to
its own dynamics, see Carmesin (2021f):

charge space is isotropic (3.31)

This fact can be expressed as follows: If a state ~v in charge
space is rotated in charge space by a rotation D̂, then the state
remains physically equivalent:

D̂ · ~v equivalent ~v (3.32)

The equivalence means that an observable A, represented by an
operator Â, provides the same results in both cases, whereby
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state ~v is represented by its wave function ψ:

Â · D̂ · ψ = Â · ψ (3.33)

The basic theory, see chapter (2), implies quantum physics,
QP, including known facts about QP. Such a fact about QP
is Wigner’s theorem, see Wigner (1931), Wigner (1959). Ac-
cording to Wigner’s theorem, the rotation D̂ in charge space is
a unitary or anti-unitary transformation multiplied by a phase
factor, most generally. Here we exclude the anti-unitary trans-
formation, as it is not plausible. As the charge space has the
dimension two, the unitary transformation D̂ is in the group
SU(2).

For that relation of the two-dimensional space of charges to a
the group SU(2) acting on a two-dimensional space, we note an
analogy: There is a number Nc of different color charges, (Pich,
2007, S. 2.2 or Fig. 3), (Cottingham and Greenwood, 2007, S.
1 or Fig. 1.7). Observations show that Nc is equal to three, see
e. g. (Pich, 2007, S. 2.2 or Fig. 3), (Cottingham and Green-
wood, 2007, S. 1 or Fig. 1.7). Accordingly, the corresponding
states in Hilbert spaceH are invariant with respect to the group
SU(3) of color charges, see e. g. Pich (2007), (Cottingham and
Greenwood, 2007, S. 1 or Fig. 1.7), Zyla (2020).

3.4.3 Traditional description

Salam and Ward (1959), Glashow (1959) and Weinberg (1967)
proposed a unification of the electromagnetic and of the weak
interaction. This proposal turned out to be very successful in
describing observations. Accordingly, this proposal essentially
represents the present day standard model of the electroweak
interaction, SMEWI. In this section, we summarize essential
results of the standard model of the electroweak interaction,
SMEWI, see e.g. Pich (2007).
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3.4.4 Electromagnetic and weak interaction

In this section, we summarize the sources of interactions. For
instance, the source of the gravitational interaction is a mass
or dynamical mass. Similarly, the source of the electromagnetic
interaction is the electric charge qe. Accordingly, in the case of
the weak interaction, there should be a corresponding source qZ
that has zero electric charge.

However, in general, a physical object has a mass or dynam-
ical mass as a source of gravity and it may have both sources
or charges qe and qZ . Thus the sources qe and qZ carried by
an object form linear combination of qe and qZ , most generally.
Accordingly, the sources qe and qZ carried by an object can
naturally be represented in a two dimensional vector space of
charges or vector space of sources.

3.4.4.1 Strength of source and of interaction

In this section, we summarize the relation between the strength
of the source and the strength of the interaction.

For this purpose, we analyze the electromagnetic interaction:
The strength of the source of an object is described by its elec-
tric charge qe. Thereby, the electric charge is at best described
as a product of the elementary charge e and a number ne of
elementary charges carried by that object2.

The strength of the interaction is at best described by the
fine structure constant α.

Moreover, the fine structure constant α is the square of the
elementary charge in Planck units ẽ:

α = ẽ2 (3.34)

So the elementary charge in Planck units ẽ describes the
strength of the charge as well as the strength of the interac-

2For the case of quarks, ne may be a fraction with the denominator three, whereas ne
is an integer for other elementary particles, see e. g. Zyla (2020), Carmesin (2021f).
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tion. Thus the two strengths are unified in Planck units. Note
that these two strengths are also unified in the Gaussian sys-
tem of units, see Gauss (1833) or (Zyla, 2020, S. 7), (Landau
and Lifschitz, 1971, § 27), whereas these strengths are not uni-
fied in the SI system. Of course, there is a unique method of
transformation, see e.g. (Jackson, 1975, p. 818).

We use the Planck system in the following. So the sources
qe and qZ of the interactions include the strengths of these in-
teractions.

In the literature, these charges are also called couplings, see
e.g. (Weinberg, 1996, 21.3.19), (Zyla, 2020, Eqs. 10.4b,c). Ac-
cordingly, we will also use the word couplings as a synonym for
such charges.

3.4.4.2 Effect of an interaction

In many cases, an interaction causes an acceleration. Examples
are attractive or repulsive interactions. However, in quantum
physics, an interaction has an effect upon the Hamiltonian or
the energy term of an object or of a system of objects, Ballen-
tine (1998), Kumar (2018), Carmesin (2022). Thus there is an
effect upon the corresponding wave function, most generally.
For instance, the spin described by the wave function might
change. More generally, the isospin of an object may change, as
an effect of an interaction. In particular, there may be an effect
upon the third component of the isospin. It is an observable
described by the following operator:

t̂3 =
1

2
σ3 =

1

2
·
(

1 0
0 −1

)
(3.35)

In the context of the electroweak interaction, the isospin is de-
noted by operators

t̂j =
1

2
σj with j ∈ {1, 2, 3} (3.36)

Hereby, σj denote the Pauli matrices.
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3.4.4.3 Charge g of the isospin interaction

The electroweak interaction has an effect upon the isospin. So
the corresponding Langrangian contains a product of t̂3 and a
respective charge. That charge is called g, see e.g. (Tanabashi
et al., 2018, S. 10) or (Pich, 2007, S. 3.4) or (Weinberg, 1996,
S. 21.3). So there are terms in the Lagrangian proportional to
t̂3 · g.

3.4.4.4 Charge g′ of the hypercharge interaction

The electroweak interaction has an effect proportional to the
electric charge qe and proportional to a novel non-electric charge
qZ . Both charges are summarized by a common charge of an
object j. It is the hypercharge yj · g′ of the object j. Hereby,
yj is the hypercharge - number of an object j, whereas g′

is a hypercharge - coupling. Note that some authors name
the hypercharge - number shortly ’hypercharge’, see e.g. (Zyla,
2020, S. 11.2) or Pich (2007). The hypercharge - number yj
can take the same values that the charge number ne can take.
Accordingly, there are terms in the Lagrangian proportional to
the hypercharge yj · g′.

3.4.5 Lagrangian

In this section, we summarize a Lagangian that describes the
SMEWI, see e.g. Pich (2007).

3.4.5.1 Free Lagrangian

The free Lagrangian for three possible bosons j = 1, 2, 3 is as
follows, see e.g. (Pich, 2007, Eq. 3.6), :

Lfree = iΣ3
boson j=1Ψ

cc
j γ

µ∂µΨj (3.37)

Note that the factor i comes from the momentum operator, e.g.
p̂x = −i~∂x, see e.g. Kumar (2018), Carmesin (2022).
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3.4.5.2 Lagrangian in QED

According to the principle of minimal coupling, see e.g. Landau
and Lifschitz (1971), the free Lagrangian Lfree is supplemented
by the Lagrangian of quantum electrodynamics, QED, LQED.
Thereby, the Lagrangian LQED is as follows, see e.g. (Pich,
2007, Eq. 3.27):

LQED = −e · AµΣ3
boson j=1Ψ

cc
j Qjγ

µΨj (3.38)

Hereby, the Qj represent charge numbers of the bosons j =
1, 2, 3.

3.4.5.3 Structure of the electroweak interaction

Based on the empirical findings in the field of the weak interac-
tion, the electric interaction can be generalized by a concept
of electroweak interaction. Thereby, the electric charge
can be generalized by a concept of neutral - current.

Hereby, the electroweak interactions consist of neutral -
current interactions and the charged - current interac-
tions. Thereby, the neutral - current interactions are me-
diated by photons or by electrically neutral Z bosons of the
electroweak interaction, and the charged - current interac-
tions are mediated by electrically charged W+ bosons or W−

bosons of the electroweak interaction, see e.g. (Pich, 2007, S.
3).

Fields and currents in the Lagrangian: The Lagrangian LEW
representing the electroweak interaction, can be expressed as
follows, see e.g. (Pich, 2007, Eq. 3.23) or (Tanabashi et al.,
2018, S. 10):

LEW = AµJ
µ
em + ZµJ

µ
Z with (3.39)

Hereby, Aµ represents the usual electromagnetic field (including
the three dimensional vector potential and the scalar potential
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Φ) in the framework of spacetime, while Zµ represents an electri-
cally neutral field inherent to the electroweak interaction. The
corresponding currents are described in the following.

Electrically charged current: The field Aµ corresponds to the
electrically charged current Jµem as follows, see for instance
(Pich, 2007, Eq. 3.23):

Jµem = −γµΣ3
boson j=1Ψ

cc
j

[
g
σ3

2
sin ΘW + g′ · yj · cos ΘW

]
Ψj

(3.40)

Hereby, g and g′ are the couplings of the electroweak in-
teraction, (Zyla, 2020, p. 204). Moreover, ΘW is the angle
describing the electroweak interaction. It is a mixing angle, see
e.g. (Tanabashi et al., 2018, p. 875). It is also called weak
angle, see e.g. (Tanabashi et al., 2018, p. 161), or Weinberg
angle (Tanabashi et al., 2018, p. 607). Furthermore, yj is the
hypercharge - number of the boson j, see for instance (Pich,
2007, Eqs. 3.8, 3.9). Additionally, σ3 is the third Cartesian
component of the isospin of the object under consideration,
see for instance (Pich, 2007, p. 12). Hereby, σ3 is a Pauli ma-
trix, see e.g. (Pich, 2007, p. 41).

Electrically neutral current: The field Zµ corresponds to the
electrically neutral current JµZ as follows, see for instance
(Pich, 2007, Eq. 3.23):

JµZ = γµΣ3
boson j=1Ψ

cc
j

[
g
σ3

2
cos ΘW − g′ · yj · sin ΘW

]
Ψj (3.41)

3.5 Units used in the SMEWI

In this section, we summarize the units that are usually used in
the SMEWI.

The elementary electric charge used in the SMEWI, ẽSMEWI

is obtained from the elementary electric charge in Planck units,
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ẽ, by multiplication by
√

4π, see e.g. (Weinberg, 1996, p. 310):

ẽSMEWI = ẽ ·
√

4π (3.42)

The explanation of the factor
√

4π will be prepared in chapters
(5, 6, 8) and presented in chapters (10). Additionally, for the
case of the bosons of the weak interaction, the charge ẽSMEWI

is multiplied by the correction factor
√

137
129 , based on diagram-

matic corrections of the QFT, see e.g. (Weinberg, 1996, p. 311):

ẽeff = ẽSMEWI ·
√

137

129
= ẽ ·

√
4π ·

√
137

129
(3.43)

Note that this correction factor corresponds to the largest per-
turbation in table (5.1), according to ẽ =

√
α ≈

√
1/137. Such

a correction is sometimes named a correction due to a pertur-
bation or gliding coupling, see e.g. (Weinberg, 1996, p. 311).

Next, we insert the theoretical value of the elementary elec-
tric charge in Planck units, ẽtheo, derived on the basis of the SQ,
see (Carmesin, 2021f, THM 4):

ẽtheo =0.085 424 547 738 with (3.44)

∆rel.,theo,obs,e =5.4 · 10−8 = 0.054 ppm (3.45)

Hereby, ∆rel.,theo,obs,e represents the relative difference between
the theoretical value and the observed value.

Altogether, the corrected elementary electric charge in the
SMEWI is as follows:

ẽeff = 0.312 070 738 with ∆ẽrel.,corr ≈ 1% (3.46)

Hereby, we estimate the relative error by 1%, as we estimate

the relative error of the correction factor
√

137
129 by 1%.
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Chapter 4

Aim

In this chapter, we realize that many essential parameters of the
SMEP and the SMEWI, such as charges and masses of elemen-
tary particles, are not explained or derived by the SMEP or by
the SMEWI. Accordingly, we formulate a list of questions that
are open in the SMEP and the SMEWI. The aim of the book
is to use the SQ, in order to derive answers to the following
questions:

4.1 Open questions in SMEP and SMEWI

A ’fundamental theory’ should provide the values of the pa-
rameters of the standard model, such as charges and masses of
elementary particles, from first principles, (Zyla, 2020, p. 507,
line 37-41). Accordingly, we summarize the following questions
that are not answered in SMEP and SMEWI:

1. How is the mass mH of the Higgs boson explained and
derived (Zyla, 2020, p. 507, line 37-41)?

2. How is the elementary electric charge ẽ explained and
derived (Zyla, 2020, p. 507, line 37-41)?

3. How are the couplings of the electroweak interaction,
g and g′, explained and derived, (Zyla, 2020, p. 507, line
37-41)?
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4. How is the weak angle ΘW of the electroweak interaction
explained and derived (Zyla, 2020, p. 507, line 37-41)?

5. How is the assumed mechanism of electroweak symme-
try breaking explained and derived (Zyla, 2020, p. 204),
(Weinberg, 1996, p. 308, lines 9-10)?

6. How is the vacuum expectation value, VEV, explained
and derived (Zyla, 2020, p. 204)?

Additionally, we summarize the following questions about fun-
damental principles used in SMEP and SMEWI:

7. What fundamental physical entity is the basis of the
principle of least action, PLA, or stationary action,
PSA (Landau and Lifschitz, 1965, S. 18), Griffiths (2008),
Schwartz (2014)?

8. What fundamental physical entity is the basis of the
principle of gauge invariance, PGI, see e.g. (Landau
and Lifschitz, 1965, S. 18), (Pich, 2007, S. 2), (Griffiths,
2008, S. 10.3), Schwartz (2014)?

9. Has general relativity, GR, been derived by the PLA or
PSA, see e.g. Hilbert (1915), Landau and Lifschitz (1971),
Hobson et al. (2006)?

10. Has general relativity, GR, been derived by the PGI, see
e.g. Lasenby et al. (1998), Santos (2019)?



Chapter 5

Formation of hypercharge

In this chapter, we apply the SQ, in order to derive and explain
the formation of the hypercharge.

5.1 Structure of electric charge ẽ

In this section, we apply the fact that the field emitted by the
electric charge ẽ is formed as a sum of squares of fields, see
equation ((Carmesin, 2021f, Eq. 3.73)). We use two groups of
squares: those that are added and those that are subtracted.

It turns out that these two groups are naturally represented
in a plane or two dimensional vector space, see Fig. (5.1). What
physical entities are in that space?

The charge ẽ is an observable, so it can be represented by a
linear operator ˆ̃e that acts in the Hilbert space H of quantum
physics. We realize that this linear operator ˆ̃e is represented in
a plane, see Fig. (5.1), corresponding to the two-dimensional
charge space. So the linear operator can naturally be decom-
posed into components in that plane. Two possibilities of linear
decomposition of the operator ˆ̃e are elaborated in the following.
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ẽ

κemitted,⊥,−

κemitted,⊥,+
Θ

Figure 5.1: Vector space of sources makes transparent the struc-
ture of the elementary charge: The elementary charge ẽ is con-
stituted by two components of emitted fields κemitted,⊥,+ and
κemitted,⊥,−, that add according to the theorem of Pythagoras
(Carmesin, 2021f, Eq. 3.73). Correspondingly, these two com-
ponents and the resulting elementary charge form a right-angled
triangle and add like vectors.

5.1.1 The component κemitted,⊥,+ of ẽ

From equation ((Carmesin, 2021f, Eq. 3.73)), we derive the
following relation:

ẽ2 = κ2
emitted,⊥,+ − κ2

emitted,⊥,− or (5.1)

Hereby, we introduced the following abbreviations:

κ2
emitted,⊥,+ =

Ĝ∗2α,1→2 + Ĝ∗2α,1→3 + Ĝ∗2α,2→1 + Ĝ∗2α,2→3

G∗2mc

and (5.2)

κ2
emitted,⊥,− =

Ĝ∗2α,3→1 + Ĝ∗2α,3→2

G∗2mc

(5.3)

Thereby, the Ĝ∗α,j→i represent fields that are emitted by the
following forced oscillations: The formation of mass has been
modeled on the basis of the SQ, and in terms of a triple of rate
gravity waves, RGW, whereby the result is in precise accor-
dance with observation, and whereby no fit has been used, see
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section (2.5) and Carmesin (2021a). As a consequence, each of
these three RGWs generates a forced oscillation at the two other
RGWs, see e.g. Landau and Lifschitz (1976). These forced os-
cillations emit the above fields Ĝ∗α,j→i, see section (2.6) and
Carmesin (2021f).

We solve equation (5.1) for κ2
emitted,⊥,+:

κ2
emitted,⊥,+ = ẽ2 + κ2

emitted,⊥,− (5.4)

The above equation represents the theorem of Pythagoras.

Thereby κemitted,⊥,+ represents the hypotenuse, while ẽ and
κemitted,⊥,− are the two legs of the right-angled triangle, see Fig.
(5.1). In that triangle, we denote the angle at the sides ẽ and
κemitted,⊥,+ by Θ.

Algebraically, the angle is characterized as follows:

ẽ = κemitted,⊥,+ · cos ΘW or (5.5)

κemitted,⊥,+ = ẽ/ cos ΘW (5.6)

5.1.2 Calculation of the angle Θ

In this section, we calculate the angle Θ. For it, we apply Eq.
(Carmesin, 2021f, Eq. 6.20):

Ĝ∗α,j→i =G∗mc
· 1

κsim.
· ln

(
1 +

κsim.
|n̄2
i − n̄2

j |

)
with (5.7)

n̄j =2j + 1 and j ∈ {1, 2, 3}; i ∈ {1, 2, 3}; (5.8)

Hereby, κsim. represents a correction factor obtained by an it-
eration essentially including Eq. (5.7), for details see Carmesin
(2021f). Its value is as follows, see Eq. (Carmesin, 2021f, Eq.
6.35):

κsim. =1 + κ
(5)
emitted,⊥ = 1.085 523 610 521 with (5.9)

κ
(5)
emitted,⊥ =0.085 523 610 521 (5.10)
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With it, we derive the following values Ĝ∗α,j→i/G
∗
mc

, which
have been derived in (Carmesin, 2021f, Eq. 3.39) and on the
basis of QG, which is based on the SQ:

Ĝ∗α,j→i
G∗mc

=
1

κsim.
· ln

(
1 +

κsim.
|n̄2
i − n̄2

j |

)
with (5.11)

Ĝ∗α,1→2

G∗mc

=0.060 474 324 951 and (5.12)

Ĝ∗α,1→3

G∗mc

=0.024 666 875 723 and (5.13)

Ĝ∗α,2→3

G∗mc

=0.040 752 509 621 (5.14)

Using these results, we calculate the positive and negative com-
ponents, see Eqs. (5.2, 5.3):

κ2
emitted,⊥,+ =0.009 583 509 754 90 and (5.15)

κ2
emitted,⊥,− =0.002 269 221 798 39 and (5.16)

κemitted,⊥,+ =0.097 985 540 211 32 and (5.17)

κemitted,⊥,− =0.047 636 349 549 37 (5.18)

√
κ2
emitted,⊥,+ − κ2

emitted,⊥,− =0.085 523 610 520 78 = ẽ (5.19)

According to the triangle in Fig. (5.1), we obtain the following
angle:

sin2(ΘW ) =
κ2
emitted,⊥,−

κ2
emitted,⊥,− + ẽ2

= 0.236 784 or (5.20)

ΘW = 29.117 653o (5.21)

5.1.3 Perturbation theory for α

In the SMEP, the couplings of the electromagnetic interaction,
of the weak interaction and of the strong interaction are related
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to the same constant, the fine structure constant α, see e.g.
Zyla (2020), Weinberg (1996), Griffiths (2008). Moreover, the
square root of the fine structure constant,

√
α, is equal to the

elementary electric charge in Planck units ẽ, see e.g. Feynman
(1985), Carmesin (2021f):

ẽ =
√
α (5.22)

Moreover, the above three interactions are based on charges
with different signs or colors, consequently, these charges can
screen each other. Thus an observer who measures the charge
in its vicinity obtains a larger value than an observer measuring
the same charge at a distant location. Usually, a measurement
of a charge in its vicinity requires a quantum object with a small
wavelength, corresponding to a high energy E.

Accordingly, the observed charge can be described by an ef-
fective charge ẽeff(E) and by an effective fine structure constant
αeff(E) as follows:

ẽeff(E) =
√
αeff(E) = ẽ · qcorr(E) with (5.23)

qcorr(E) =

√
αeff(E)

α
and (5.24)

ẽSMEWI,eff(E) =ẽSMEWI · qcorr(E) (5.25)

Hereby, we introduced the correction factor qcorr(E).

The above measured values αeff(E) are theoretically de-
scribed with help of a perturbation theory, see e.g. table (5.1).
In the present study, we apply results of perturbation theory, see
e.g. Jegerlehner (2001), Jegerlehner (2011), Jegerlehner (2019),
(Zyla, 2020, S. 10.2), (Weinberg, 1996, p. 311), see table (5.1).
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E
GeV 0.01 0.1 1 10 80

1
αeff (E) 136.8 136.24 134.95 132.28 129

Table 5.1: Inverse effective fine structure constant 1
αeff (E) as a

function of the energy E in GeV, see e.g. Jegerlehner (2001),
Jegerlehner (2011), Jegerlehner (2019), (Weinberg, 1996, p.
311).

Accordingly, we apply the correction factor to Eq. (5.20):

sin2 ΘW (E) =
κ2
emitted,⊥,−

κ2
emitted,⊥,− + ẽ2q2

corr(E)
=

κ2
emitted,⊥,−

κ2
emitted,⊥,− + αeff(E)

(5.26)

Using the above Eq., we obtain the values sin2 ΘW (E) shown in
table (5.2).

E
GeV 0.01 0.1 1 10 80

sin2 ΘW (E) 0.23665 0.23628 0.23542 0.233627 0.2314

Table 5.2: Values for sin2 ΘW (E) as a function of the energy E
in GeV.

5.1.4 Amount of perturbations

If the energy varies in the interval E
GeV ∈ [0.01, 80], then the rel-

ative difference of the effective fine structure constant αeff(E)
and the fine structure constant α varies in the following interval,
see table (5.1):

|αeff(E)− α|
α

∈ [0, 6.2%], if
E

GeV
∈ [0.01, 80] (5.27)
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Similarly, the square relative difference of the sin2 ΘW (E) varies
as follows, see table (5.2):

| sin2 ΘW (E)− sin2 ΘW (0.01GeV)|
sin2 ΘW (0.01GeV)

∈ [0, 2.27%], (5.28)

if
E

GeV
∈ [0.01, 80] (5.29)

Altogether, the perturbations are relatively small.

5.1.5 Application of perturbations

The perturbations are applied to couplings as follows, see Figs.
(5.1, 6.1, 6.2):

g′(E) =ẽeff(E)/ cos ΘW (E) and (5.30)

g(E) =ẽeff(E)/ sin ΘW (E) and (5.31)

gz(E) =
√
g2(E) + g′2(E) (5.32)

5.1.6 Comparison of Θ with the weak angle ΘW

In this section, we compare the angle Θ derived from our theory,
see dotted line in Fig. (5.2), with the weak angle or Weinberg
angle ΘW based on observations, see data points Fig. (5.2). We
emphasize that we derived the values of the angle Θ without
application of any fit. Next, we investigate the angle Θ derived
from our theory:

(1) The dotted lines in Fig. (5.2) show the angle Θ, as well as
the angle Θ as a function of E, derived from our theory.

(2) Our derived values of the angle Θ are in accordance with
the observed values of the weak angle ΘW .

(3) So our theory explains the weak angle ΘW .

(4) In particular, our theory is in precise accordance, that is
in accordance within the errors of measurement, for the cases
of the APV-experiment, CMS-experiment, ATLAS-experiment
and Tevatron-experiment, see Fig. (5.2).
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10−2 100 102

0.23

0.24

0.25

0.235

0.245

E in GeV

si
n

2
Θ
W

Figure 5.2: Square of the weak angle or weak mixing angle or
Weinberg angle sin2 ΘW (Weinberg, 1996, p. 307) or (Tan-
abashi et al., 2018, Fig. 10.2) as a function of the energy E
of the probe.
Probes:
×, APV (atomic parity violation) (Tanabashi et al., 2018, p.
166).
o, SLAC (Tanabashi et al., 2018, p. 166).
∆, weak charge of a proton used (Tanabashi et al., 2018, p.
166).
�, CMS (Erler and Schott, 2019, p. 34).
�, ATLAS (Erler and Schott, 2019, p. 34).
∗, Tevatron (Tanabashi et al., 2018, Eq. 10.43).
Theories:
loosely dotted: present derivation, see Eq. (5.20).
dotted: present derivation, including perturbations, see table
(5.2).
−−−−− SMEP, hereby, different schemes have been matched
with help of fitted and scheme dependent matching terms (Tan-
abashi et al., 2018, p. 166).



Chapter 6

Formation of isospin

In this section, we use the SQ, in order to derive and explain
the formation of the isospin.

6.1 Components qe and qZ of hypercharge

It is useful to introduce a coordinate system in Fig. (5.1). For
it we use the two components of the hypercharge.

The vertical component of the hypercharge in Fig. (5.1) rep-
resents the electrical charge qe, as it represents the elementary
charge ẽ in particular.

The horizontal component of the hypercharge in Fig. (5.1)
represents the non-electric component. Accordingly, we mark
the horizontal axis by qZ , in order to mark a zero electric com-
ponent of the hypercharge.

Altogether, we arrive at the coordinate system in Fig. (6.1).

6.2 Linear independence of hypercharge and

isospin

In this section, we analyze the relation between hypercharge
and isospin I, see e.g. section (3.3.2). In the context of the
electroweak interaction, the isospin is denoted by tj, see (Tan-
abashi et al., 2018, p. 173), Zyla (2020), (Weinberg, 1996, S.

79



80 CHAPTER 6. FORMATION OF ISOSPIN

ẽ

κemitted,⊥,−

κemitted,⊥,+

= g′

= gHC

ΘW

qe

qZ

Figure 6.1: The vector space of sources makes transparent the
components of hypercharge: The coupling gHC = κemitted,⊥,+
of the hypercharge has two orthogonal components: the ele-
mentary charge ẽ and the non-electric component κemitted,⊥,−,
see Fig. (5.1). The corresponding coordinate axes represent
the electric component qe and the non-electric component qZ .
Hereby, perturbations are treated in S. (3.5, 5.1.3, 5.1.4, 5.1.5).

21.3). The third component t3 of the isospin represents an ob-
servable physical quantity, see Eq. (3.29). So it is represented

by an operator ~̂t in quantum physics, see Carmesin (2022), Ku-
mar (2018), Ballentine (1998), Sakurai and Napolitano (1994).

In particular, the third component t3 of the isospin ~̂t is repre-

sented by an operator t̂3. The operator of the isospin ~̂t is equal
to the vector of the Pauli spin matrices multiplied by one half,
so that the eigenvalues in Eq. (3.29) are reproduced:

σ3 =

(
1 0
0 −1

)
= 2 · t̂3, (6.1)

σ1 =

(
0 1
1 0

)
= 2 · t̂1 and σ2 =

(
0 −i
i 0

)
= 2 · t̂2 (6.2)

The normalization has been introduced as a convention.
As a matter of empirical fact, isospin and hypercharge are

quantities by their own, see e.g. Tanabashi et al. (2018). In
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ẽ

κemitted,⊥,−

κemitted,⊥,+
= g′

= gHC

ΘW

qe

qZ

qIqHC

g = gI

ΘW

Figure 6.2: Vector space of sources with coordinates qHC and qI
corresponding to the couplings gHC of the hypercharge and gI of
the isospin. Hereby, perturbations are treated in S. (3.5, 5.1.3,
5.1.4, 5.1.5).

particular, they are linear independent. Accordingly, the cou-
pling g′ = gHC of the hypercharge, HC, should be orthogonal
to a possible coupling g or gI of isospin I.

6.3 Coordinates corresponding to gHC and gI

The coupling gHC of the hypercharge and gI of the isospin are
orthogonal to each other. So the coordinate axes including gHC
and gI in Fig. (6.2) constitute an orthogonal coordinate system.
We denote the axes by qHC and qI , as the constants gHC and gI
represent corresponding charges.

The charge gI of the isospin includes an electric charge ẽ,
see Fig. (6.2). As the elementary charge ẽ is universal, see
Carmesin (2021f), the charge gI must have the electric compo-
nent ẽ. So the charge gI ranges from the top of the triangle
in Fig. (6.2) towards the axis qZ . Altogether, we obtain the
charges gHC of the hypercharge and gI of the isospin as well as
the corresponding coordinates as shown in Fig. (6.2).
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Theorem 5 Derivation of charge space

(1) Derivation of two-dimensional charge space: Based
on the SQ, Carmesin (2021f) derived the electric elementary
charge, ẽ. As an additional result, that charge has two com-
ponents, κemitted,⊥,+ and κemitted,⊥,−. Thus, a two dimensional
charge space is derived, see Fig. (6.2).

(2) Derivation of three couplings: The derived charge ẽ and
its two components κemitted,⊥,+ and κemitted,⊥,− in (1) represent
couplings.

(3) Derivation and explanation of the weak angle: The
couplings in (2) form a triangle in charge space, see Fig. (6.2).

(3.1) Derivation of the enclosed angle Θ: Thereby, the an-
gle Θ enclosed by ẽ and κemitted,⊥,+ has been derived. Thereby,
that enclosed angle Θ is algebraically described as follows:

sin2(Θ) =
κ2
emitted,⊥,−

κ2
emitted,⊥,− + ẽ2

= 0.236 784 (6.3)

(3.2) Derivation of the enclosed angles Θ(E): Moreover,
the angle enclosed by ẽ and κemitted,⊥,+ has been derived as a
function of the energy E, by using results of perturbation the-
ory. Utilizing these results, a correction factor qcorr(E) has been
derived, see tables (5.1, 5.2). That enclosed angle Θ(E) is al-
gebraically described as follows:

sin2(Θ(E)) =
κ2
emitted,⊥,−

κ2
emitted,⊥,− + ẽ2q2

corr(E)
(6.4)

(3.3) Comparison of derived and observed angles:
Furthermore, the derived enclosed angle Θ(E) has been com-

pared with the weak angle ΘW (E), Fig. (5.2). Thereby, derived
and observed angles are in accordance. In addition, derived and
observed angles are in precise accordance within errors of ob-
servation for the APV-experiment, CMS-experiment, ATLAS-
experiment and Tevatron-experiment, see Fig. (5.2).
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(3.4) Explanation of the weak angle: As a result of (3.1),
(3.2) and (3.3), our theory explains the weak angle on the basis
of the SQ, whereby, no fit has been applied.

(4) Derivation of the electroweak couplings g and g′:
The electroweak couplings g and g′ have been derived. Hereby,
perturbations are treated in S. (3.5, 5.1.3, 5.1.4, 5.1.5):

(4.1) Microscopic derivation of g′: The electroweak coupling
g′ has been derived on the basis of the microscopic model of the
elementary charge in Carmesin (2021f). That model is based
on the SQ, applies no fit, provides κemitted,⊥,+, and its results
are in precise accordance with observation:

g′ =κemitted,⊥,+ (6.5)

(4.2) Quantum physical derivation of g: Based on the SQ,
quantum physics (QP) has been derived in Carmesin (2022).
Thereby, it has been shown that QP includes a far distant limit
so that the external behavior of a quantum object is de-
scribed, while the detailed internal behavior of the quantum
object need not to be specified. Using QP and (4.1), the cou-
pling g has been derived:

g =ẽ/ sin ΘW without perturbations (6.6)

g(E) =ẽeff(E)/ sin ΘW (E) with perturbations atE (6.7)

The results of (4.1) and (4.2) are illustrated by the triangle in
charge space, see Fig. (6.2). Eq. (6.7) includes perturbations
such as screening, see tables (5.1,5.1), Fig. (5.2), S. (3.5, 5.1.5)
or e.g. Zyla (2020).

(4.3) Comparison with observation: The electroweak cou-
plings g and g′ are usually compared with experiments by appli-
cation of the weak angle ΘW , the elementary electric charge ẽ
and the Eqs. (6.5, 6.6), see e.g. Zyla (2020).

(4.4) Explanation of the couplings g and g′: Based on
(4.1), (4.2) and (4.3), the coupling g′ has been explained on a
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microscopic basis, while the coupling g has been explained on
a quantum physical basis. Both couplings g and g′ have been
explained on the basis of the SQ.

(5) Charges derived by QG:
Based on SQ, the electric charge, a non-electric charge, hy-

percharge and an isospin charge have been derived. Hereby, per-
turbations are treated in S. (3.5, 5.1.3, 5.1.4, 5.1.5).

(5.1) Hypercharge derived by QG:
The component κemitted,⊥,+ of the elementary charge has been
derived microscopically, see (4.1) or Carmesin (2021f).

Combined with (3.4), it has been shown that κemitted,⊥,+ is
equal to the coupling g′. In Planck units, the elementary electric
charge ẽ is equal to the square root of the coupling (fine structure
constant),

√
α. Correspondingly, the derived coupling, g′ can be

interpreted as a hypercharge ỹ, if desired.

(5.2) Isospin charge derived by QG: The coupling g =
ẽeff (E)

sin ΘW (E) has been derived, based on the external quantum phys-

ical behavior, see (4.2). Similarly as in (5.1), the derived cou-
pling, g can be interpreted as isospin charge, if desired.

(5.3) Isospin orthogonal to hypercharge: In charge space,
the coupling g′ of hypercharge is orthogonal to the coupling g of
isospin, see Fig. (6.2). This result is based on the empirically
observed independence of the hypercharge and the isospin.

(5.4) Electric charge orthogonal to non-electric charge:
In charge space, the coupling ẽ of electric charge is orthogonal to
the coupling

√
g2 + g′2 of the non-electric charge, see Fig. (6.2).

This finding is based on the microscopically derived elementary
charge, see Carmesin (2021f).



Chapter 7

Derivation of the Lagrangian

In this section, we show how the Lagrangian can be derived and
explained from the spacetime-quadruple, SQ.

Of course, it is possible to find various methods for an in-
troduction of a Lagrangian or of equations in Quantum Field
Theory, see e. g. (Weinberg, 1996, S. 1-16), Schwartz (2014),
Bialynicki-Birula and Bialynicki-Birula (1975), Swanson (2017),
Fewster and Rejzner (2019).

However, such introductions usually start with assumed prin-
ciples or postulates. In contrast, we start with the transparent
basic concepts of gravity and relativity, which we elaborated
and presented in the form of the spacetime-quadruple, SQ, see
chapters (1, 2) or Carmesin (2022), Carmesin (2021d).

7.1 PLA and Free Lagrangian

In this section, we show how the free Lagrangian is derived
from the spacetime-quadruple. This is achieved by the following
sequence of steps:

(1) The SQ implies QP and QG, see Carmesin (2022).

(2) So an object forms vacuum according to a rate ˙̂ε · tn, and
the rate is equal to the wave function ˙̂ε · tn = ψ · fn, (Carmesin,
2022, THM 6).

85
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(3) If a wave function describes a free object,

and if a semiclassical limit allows that a path from a point A
to a point B can be applied,

then that path from A to B occurs in nature, that obeys the
principle of least time, see (Born and Wolf, 1980, S. 3.3.2).

(4) If a wave function describes a free object,

and if a semiclassical limit allows that a path from a point A
to a point B can be applied,

then that path from A to B that requires the least time, is
equal to the path from A to B that has the least time action.

(5) The above steps (3) and (4) imply the following:

If a wave function describes a free object,

and if a semiclassical limit allows that a path from a point A
to a point B can be applied,

then that path from A to B occurs in nature that has the least
action.

(6) The consequence of the SQ in step (5) is usually called the
principle of least action, PLA.

(7) The principle of least action, PLA, can be applied, in order
to introduce a Langrangian, L, and in order to derive the Euler-
Lagrange equations for L, see e. g. Landau and Lifschitz (1971),
(Schwartz, 2014, S. 3.2).

(8) It is possible and typical in QFT, to represent the starting
point of the underlying path, that is considered explicitly or
implicitly, by an assumed vacuum state Ωin, see e. g. (Schwartz,
2014, S. 14), (Bialynicki-Birula and Bialynicki-Birula, 1975, §
19), (Weinberg, 1996, S. 16.1 or p. 63), Fewster and Rejzner
(2019).

Similarly, it is possible and typical in QFT, to represent the
ending point of that path by an assumed vacuum state Ωout.

Altogether, this derivation proves the following theorem:
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Theorem 6 Free Lagrangian based on SQ

Based on the spacetime-quadruple, the following can be derived:

(1) If an object propagates freely from a point A to a point B,

and if the wave function of the object can be described in a
semiclassical limit that allows a path from A to B,

then that path from A to B occurs in nature that has the least
action. So the PLA holds for such an object.

(2) If an object propagates freely from a point A to a point B,

and if the wave function of the object can be described in a
semiclassical limit that allows a path from A to B,

then the object can be described by a free Lagrangian L0.

Thereby, the Euler-Lagrange equation holds.

(3) In numbers (1) and (2), the start A and the end B of the
underlying path can be represented by assumed vacuum states
Ωin and Ωout.

7.2 Principle of Gauge Invariance, PGI

In this section, we apply the SQ in order to show that the PGI
can be applied to a free Lagrangian L0. Note that the free
Lagrangian L0 has also been derived on the basis of the SQ, see
THM (6).

This is achieved by the following sequence of steps:

(1) The SQ implies QP and QG, see Carmesin (2022).

(2) The theorem (6) implies:

If an object propagates freely from a point A to a point B,

and if the wave function of the object can be described in a
semiclassical limit that allows a path from A to B,

then the object can be described by a free Lagrangian L0.

Thereby, the Euler-Lagrange equation holds.
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(3) Each object forms vacuum according to a rate ˙̂ε · tn, and
the rate is equal to the wave function ˙̂ε · tn = ψ · fn, (Carmesin,
2022, THM 6).

(4) If the wave function of the object in step (3) remains coher-
ent (no decoherence occurs), see e. g. (Ballentine, 1998, S. 19,
20), then the wave function has a global phase Θ.

(5) The global phase in (4) can be disturbed at locations ~x or
xµ by a local interaction, that is proportional to a charge or
hypercharge or isospin-charge/isospin-coupling q. An example
for it has been provided by Aharonov and Bohm (1959). Hereby,
Pearle (2017) elaborated in detail, how the phase of the wave
function is modified by the vector potential Aµ, and how that
phase explains the shift of the maxima of diffraction. Thereby,
there occurs a local phase Θ(~x) or Θ(xµ), different from the
global phase Θ.

(6) The local phase Θ(xµ) in (5) of a wave function in (4)

ψΘ = exp(i ·Θ(xµ)) · ψ (7.1)

causes an additional summand ∆ in the derivative

∂µψ(xµ) (7.2)

as follows:

∂µψΘ(xµ) = exp(iΘ(xµ))[∂µ + i∂µΘ(xµ)]ψ(xµ) or (7.3)

∂µψΘ(xµ) = exp(iΘ(xµ))∂µψ(xµ) + ∆ with (7.4)

∆ = iψΘ(xµ) · ∂µΘ(xµ) (7.5)

(7) The additional summand ∆ in the derivative in (6) causes
an additional summand in the Schrödinger equation SEQ, see
Carmesin (2022). However, the SEQ describes the propaga-
tion of vacuum, see Carmesin (2022). Hereby, the vacuum ex-
hibits translation invariance in space and possibly time,
in time at least at small and intermediate scales, see Carmesin
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(2021d), Carmesin (2021c). Thus the additional summand ∆ in
the SEQ must be compensated. That demand for the compen-
sation of the additional summand ∆ represents the Principle
of Gauge Invariance, PGI, see (Pich, 2007, S. 2), (Schwartz,
2014, 14.5).

(8) The compensation of the additional summand ∆ in (7) is
achieved with the covariant derivative, see chapter (3). For
instance, for the case of the electric charge qe, the covariant
derivative is as follows:

Dµψ(xµ) = [∂µ + i · q · Aµ(xµ)]ψ(xµ) with (7.6)

Aµ,Θ(xµ) = Aµ(xµ)− 1

qe
∂µΘ(xµ) (7.7)

Hence, DµψΘ(xµ) is as follows, see Eq. (7.3):

DµψΘ(xµ) = eiΘ(xµ)[∂µ + i∂µΘ(xµ) + iqeAµ,Θ(xµ)]ψ(xµ) so
(7.8)

DµψΘ(xµ) = eiΘ(xµ)[∂µ + i · qe · Aµ(xµ)]ψ(xµ) thus
(7.9)

DµψΘ(xµ) = [∂µ + i · qe · Aµ(xµ)]ψΘ(xµ) (7.10)

Thence, the form of the covariant derivative in Eqs. (7.6) and
(7.10) is the same. Consequently, the covariant derivative com-
pensates ∆, as demanded by the PGI.

(9) The PGI provides the functional form of the interaction.
See for instance Eq. (7.6).

(10) Similarly as for the case of the SEQ, the local phase Θ(x)
in (5) causes a summand LΘ(x) in the Lagrangian that occurs in
addition to the free Lagrangian L0, since L0 contains derivatives
∂µ.

(11) The additional term LΘ(x) in the Lagrangian can be com-
pensated by the interaction term Lint in the Lagrangian.
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Thereby, Lint can be derived via the covariant derivative as
outlined for the case of the SEQ. In this manner the interaction
term Lint in the Lagrangian can be derived.

(12) Altogether, the form of the interaction is derived from the
SQ as follows: The SQ provides the SEQ describing vacuum.

An interaction via a charge q causes a local phase Θ(xµ).

Θ(xµ) contributes to the SEQ.

Thus Θ(xµ) destroys translation invariance of the SEQ.

But the SEQ describes vacuum, according to the SQ.

Thence the term Θ(xµ) in the SEQ must be compensated.

The demand for that compensation is the PGI.

Theories that are obtained by this method are called gauge
theories, whereby the method has been proposed by Weyl
(1919), Fock (1926), Weyl (1929), Yang and Mills (1954).

Thereby, the interaction may be represented by using a group
SU(n), see section (3.4.2). A group that is used as repre-
sentation of an interaction is named gauge group, see e. g.
Schwartz (2014).

Altogether, the above derivation in steps (1) until (12) proves
the following theorem:

Theorem 7 Principle of Gauge Invariance, PGI

Based on the spacetime-quadruple, the following can be derived:

(1) If an object propagates freely from a point A to a point
B, and if the wave function of the object can be described in
a semiclassical limit that allows a path from A to B, then the
object can be described by a free Lagrangian L0. Thereby, the
Euler-Lagrange equation holds.

(2) In (1), the start A and the end B of the underlying path can
be represented by assumed vacuum states Ωin and Ωout.

(3) Each object forms vacuum according to a rate ˙̂ε · tn, and the
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rate is equal to the wave function ˙̂ε · tn = ψ · fn, (Carmesin,
2022, THM 6).

(4) If the wave function ψ in (3) remains coherent, see e. g.
(Ballentine, 1998, S. 19, 20), then ψ has a global phase Θ.

(5) The global phase in (4) can be disturbed locally by a local
interaction proportional to a charge or hypercharge or isospin-
charge/isospin-coupling q, so that a local phase Θ(x) occurs.

(6) The local phase Θ(x) in (5) enters the Schrödinger equation
SEQ. As the SEQ describes the dynamics of the vacuum, it must
be translation invariant. Thus the term Θ(x) in the SEQ must
be compensated. The demand for that compensation is the PGI.

(7) That compensation can be achieved by constructing an ap-
propriate covariant derivative. Thereby, the interaction term
corresponding to the charge q can be derived. In this manner,
the SQ provides the functional form of the interaction corre-
sponding to the charge q. Hereby, q can represent the electric
charge, as well as charges of the electroweak interaction or the
strong interaction, provided the above conditions apply.

(8) In particular, that compensation provides the interaction
term Lint in the Lagrangian.

7.3 SMEWI based on Gauge Group SU(2)

In this section, we derive the description of the electroweak
interaction by the gauge group SU(2), see sections (3.4.2, 7.2).

This is achieved by the following sequence of steps:

(1) We apply the conditions of THM (7).

(2) The SQ provides QG, and QG provides the derivation of
the elementary electric charge e, Carmesin (2021f).

(3) In QG, the elementary electric charge e is generated by
forced oscillations, Carmesin (2021f), and these can be grouped
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to a two-dimensional charge space, see chapters (5, 6) and Fig.
(6.2).

(4) The two-dimensional charge space in (3) causes a corre-
sponding representation of the transformations of states in that
two-dimensional charge space. Wigner (1931) showed that these
transformations are represented by unitary operators in the
group SU(2), see also Wigner (1959) or chapter (3).

Altogether, this derivation proves the following theorem:

Theorem 8 SU(2) - symmetry of the SMEWI

(1) The spacetime-quadruple, SQ, implies the PGI, see THM
(7.

(2) The SQ implies quantum gravity, QG, which in turn implies
the generation of the elementary charge via forced oscillations,
Carmesin (2021f).

(3) The generation of the elementary charge via forced oscilla-
tions in (2) implies the two-dimensional charge space, see Fig.
(6.2).

(4) The pair of the PGI in (1) and the two-dimensional charge
space in (3) implies the SU(2) - symmetry of the SMEWI.

7.4 Isospin doublets based on SQ

In this section, we derive the isospin doublets in Eqs. (3.29,
3.30) based on the gauge group SU(2), see sections (3.4.2, 7.2).
Thereby, the gauge group SU(2) is based on the SQ, see section
(7.3).

This is achieved by the following sequence of steps:

(1) We apply the conditions of THM (7).

(2) The SQ provides QG.

(3) In QG, the elementary electric charge e is generated by
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forced oscillations, Carmesin (2021f), and these can be grouped
to a two-dimensional charge space, see chapters (5, 6) and Fig.
(6.2).

(4) The two-dimensional charge space in (3) causes a corre-
sponding representation by the gauge group SU(2), see (8).

(5) As a result of the PGI, the isospin gauge group SU(2) can
be represented as follows:

(5a) The elementary charge ẽ corresponds to the electromag-
netic potential Aµ, while the non-electric charge qZ corresponds
to a field or potential Zµ.

(5b) The fields or potentials Aµ and Zµcan be transformed as
follows, see (Pich, 2007, Eq. 52):(

W 3
µ

Bµ

)
=

(
cos ΘW sin ΘW

− sin ΘW cos ΘW

)
·
(
Zµ
Aµ

)
(7.11)

(5c) The fields or potentials W j
µ with j = 1, 2, 3, form an oper-

ator Ŵµ as a linear combination of Pauli matrices σ̂j as follows,
see (Pich, 2007, Eq. 40):

Ŵµ = Σj=3
j=1

σ̂j
2
·W j

µ (7.12)

(5d) Thus, elementary particles can be organized as doublets of
eigenstates of the operator

σ̂j
2 . Thereby, the two particles of a

doublet have an isospin differing by 1. This corresponds to the
empirical finding in Eqs. (3.29, 3.30).

(5e) Moreover, the charge operator is as follows, see (Weinberg,
1996, Eq2. 21.3.22-21.3.24):

Q̂ =
1

2

(
1 0
0 −1

)
− 1

2

(
1 0
0 1

)
=

(
0 0
0 −1

)
(7.13)

Thus, for the case of the neutrino, we derive the eigenvalue zero:

Q̂

(
1
0

)
=

(
0 0
0 −1

)
·
(

1
0

)
= 0 ·

(
1
0

)
(7.14)
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Similarly, for the case of the electron, we derive the eigenvalue
−1:

Q̂

(
0
1

)
=

(
0 0
0 −1

)
·
(

0
1

)
= −1 ·

(
0
1

)
(7.15)

Both eigenvalues of the electric charge correspond to the ob-
served charges.

Analogously, the eigenvalues of isospin and electric charge
can be derived for the other five isospin doublets in Eqs. (3.29,
3.30).

Altogether, the SQ provides the correct eigenvalues of electric
charge and isospin for the isospin doublets. Thus, this deriva-
tion proves the following theorem:

Theorem 9 Isospin doublets

(1) The spacetime-quadruple, SQ, implies the PGI, see THM
(7).

(2) The SQ implies the gauge group SU(2) of the isospin, see
THM (8).

(3) The pair of the PGI in (1) and gauge group SU(2) of the
isospin in (2) implies the organization of the elementary par-
ticles in Eqs. (3.29, 3.30) in terms of the six isospin doublets
in Eqs. (3.29, 3.30). Thereby, the eigenvalues of isospin and
electric charge correspond to the observed values.



Chapter 8

Derivation of the masses

In this section, we derive and explain the masses of the bosons
of the electroweak interaction, W−, Z and W+.

8.1 Lagrangian of electroweak interaction

In this section, we derive the Lagrangian of the electroweak
interaction. For it, we apply Planck units.

8.1.1 Free Lagrangian L0

In this section, we present the free Lagrangian.

A relativistic object without spin and with a possible mass or
dynamic mass m has the following free Lagrangian, see (Landau
and Lifschitz, 1982, p. 32-36 or § 10 or Eq. 10.9):

L0 = ∂µψ
cc · ∂µψ −m2ψcc · ψ (8.1)

8.1.2 On symmetries in the weak interaction

In this section, we summarize observations about very special
symmetries occurring in the weak interaction.

A particle with a quantum number s of the spin and with
a quantum number ms of the z-direction of the spin has the
following helicity:

λ = ms/s (8.2)

95
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Thereby, the z-direction is usually chosen to be the direction
of propagation, see e.g. (Griffiths, 2008, S. 4.4). For instance,
a neutrino has s = 1/2 and ms = 1/2 or ms = −1/2. So, in
principle, a neutrino can have the helicity λ = ±1. However,
Goldhaber et al. (1957) discovered that neutrinos have the he-
licity λ = −1, also called left-handed, while antineutrinos have
the helicity λ = 1, or right-handed.

More generally, Lee and Yang (1956) realized on the basis
of experimental indications, that the weak interaction of a par-
ticle might depend on its helicity. This would not only apply
to neutrinos, as the electroweak interaction applies to all par-
ticles with charge, hypercharge or isospin, see section (3.3.2)
and chapters (5, 6). Indeed, Wu et al. (1957) observed in an
experiment with a β decay, that the weak interaction applies to
left-handed particles only (helicity λ = 1). This has been con-
firmed by many other experiments, see e.g. (Tanabashi et al.,
2018, S. 13). This fact can be expressed with help of vectors
and axial vectors, see e.g. Zyla (2020), or it can be expressed in
terms of the hypercharge as follows, (Weinberg, 1996, p. 305,
306): We introduce a left-handed hypercharge operator:

ŶL = g′ · 1 + γ5

4
·
(

I 0
0 I

)
(8.3)

Hereby, we used a gamma matrix, see glossary. Next, we intro-
duce the usual right-handed hypercharge operator:

ŶR = g′ · 1− γ
5

2
(8.4)

The above matrix is zero, in the present representation, indi-
cating that right-handed particles do not experience the cor-
responding weak interaction. The hypercharge operator is the
sum:

Ŷ = ŶL + ŶR (8.5)

Moreover, Christenson et al. (1964) discovered, that also the
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product of parity and charge, CP, is not a conserved observable
in all applications, see also (Tanabashi et al., 2018, S. 13).

A possible derivation of such symmetries on the basis of SQ
is presented in S. (8.9).

8.1.3 Lagrangian L via PGI

In this section, we show how the PGI is applied to the free
Lagrangian.

For it, we use the covariant derivative Dµ, see (Zyla, 2020,
Eq. 11.4) or (Weinberg, 1996, Eq. 21.3.25):

Dµ = ∂µ + igΣα=3
α=1

σα

2
W α

µ + ig′
1

2
Ŷ ·Bµ (8.6)

Thereby, Ŷ represents the operator of the hypercharge-number,
while σα are Pauli matrices. We applyDµ to the free Lagrangian
L0. Additionally, we use the fact that the momentum is propor-
tional to the derivative times the complex unit i. (Note that the
fields W α

µ in (Zyla, 2020, S. 11) correspond to the ’electromag-
netic fields’ or better vector potentials Aα

µ in (Weinberg, 1996,
S. 21)).

So the Lagrangian is as follows, see (Weinberg, 1996, Eq.
21.3.25):

L = −|(Dµψ)|2 −m2ψcc · ψ or (8.7)

L = −|(Dµψ)|2 − V (ψ) (8.8)

Hereby, the covariant derivatives include the fields W α
µ and Bµ,

while the mass term m2ψcc ·ψ, can be obtained from the energy
momentum relation E2 = p2c2 + m2

0c
4, see e.g. (Landau and

Lifschitz, 1982, p. 32-36 or § 10 or Eq. 10.9). However, the
potential V (ψ) of the SMEWI usually includes a term with a
fourth power, which is not derived with help of the PGI in terms
of a covariant derivative. Instead, such a term is postulated in
addition to Eq. (8.7), see e.g. (Weinberg, 1996, S. 21.3).
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8.2 Incompleteness of the PGI

Accordingly, the Lagrangian in Eq. (8.7) that is based on the
PGI and on relativity is incomplete: That Lagrangian in Eq.
(8.7) describes the electroweak interaction in terms of the fields
W α

µ and Bµ. However, these fields are mediated (or transported
or propagated) by W bosons and Z boson of interaction, but
the observed masses of these bosons are not described by the
Lagrangian in Eq. (8.7). In this manner, the PGI is incomplete.

8.3 Solution by phase transition, PT

Higgs (1964), Englert and Brout (1964) and Guralnik et al.
(1964) proposed a mechanism, in order to overcome that incom-
pleteness. For it they introduced a new item into the SMEP: a
phase transition, PT that provides mass. That proposal is
named Higgs mechanism.

However, that mechanism cannot be derived from the PGI.
Accordingly, (Weinberg, 1996, Eqs. 21.3.20 until 21.3.28) re-
alized that assumptions about that Higgs mechanism are re-
quired.

We summarize these assumptions in section (8.4). However,
it turns out that a Higgs vacuum with a vacuum expectation
value VEV is proposed in the Higgs mechanism. Thereby, that
Higgs vacuum is very different from the present day vacuum,
see section (8.5).

We solve this problem in section (8.7). For it, we derive the
required phase transition including its properties based on the
SQ. Accordingly, based on the SQ, we provide a derivation of
the PT that provides the VEV. Thereby, we provide an expla-
nation of the formation of the VEV, whereby that formation
has usually been modeled by the proposed Higgs mechanism
with its assumptions, see (Weinberg, 1996, S. 21).
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8.4 PT by Higgs mechanism

Higgs (1964) proposed a phase transition. With it, a mass m
should be generated. For it, a Higgs field Φ has been proposed,
see e. g. Higgs (1964), (Zyla, 2020, S. 11.2), (Weinberg, 1996,
S. 21).

8.4.1 SMEP scalar potential

Landau (1937) proposed and developed a theory of phase tran-
sitions. Thereby, a potential V (Φ) as a function of a field Φ or
order parameter is used. Hereby, the potential is constituted by
a square and a fourth order term of Φ, with two parameters m
and λ as follows:

V (Φ) = m2 · Φ2 + λΦ4 = VSMEP (8.9)

The above potential (Eq. 8.9) is used in the case of the Higgs
mechanism, see e. g. (Zyla, 2020, Eq. 11.1). We name that
potential SMEP scalar potential, VSMEP . Note that a Φ2-Φ4

- potential has also been suggested by Jormakka (2020).

(Note that the potential is named SM scalar potential in
(Zyla, 2020, Eq. 11.1 and S. 11.2). However, there is also a stan-
dard model of cosmology, SMC, see e. g. Planck-Collaboration
(2020), Weinberg (1972). And the SMC will become essential
for the explanation of the SMEWI, see below. So we name the
potential VSMEP .)

8.4.2 SMEP Higgs Lagrangian

(Weinberg, 1996, Eqs. 21.3.20 until 21.3.28 and S. 21) pointed
out, that the Higgs mechanism requires assumptions. One of
these assumptions provides a method by which the Higgs field Φ
and the SMEP scalar potential VSMEP (Φ) are introduced in the
Lagrangian of the electroweak interaction in Eq. (8.7). That
procedure consists of two steps:
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Firstly, that procedure requires that the wave function in Eq.
(8.8) is replaced by the Higgs field:

replace ψ by Φ (8.10)

Of course, in traditional QP, a wave function should not be re-
placed by a potential. In the SMEWI, this replacement is part
of an assumption about the Higgs mechanism, see e.g. (Wein-
berg, 1996, S. 21.3). In the SQ, we can explain and derive that
replacement, see Carmesin (2022), and see below.

Secondly, that procedure requires that the potential in Eq.
(8.8) is replaced by the SMEP scalar potential VSMEWI(Φ) in
Eq. (8.9):

replace V by VSMEWI (8.11)

8.4.2.1 Symmetric phase

In the symmetric phase, the field, that is the order parameter
of the phase transition, PT, is zero, see e.g. Landau (1937),
Weinberg (1996), Carmesin (2021a):

〈Φ〉 = 0 symmetric phase (8.12)

8.4.2.2 Phase with broken symmetry

In the phase with broken symmetry, the field, that is the or-
der parameter of the phase transition, PT, is non-zero, see e.g.
Landau (1937). Its value is derived as usual in a Φ2-Φ4 model
in PTs. Hereby, the order parameter is complex. Accordingly,
it can be represented in two-dimensional real space, Weinberg
(1996), Carmesin (2021a):

〈Φ〉 =
1√
2
·
(

0
vopt

)
broken symmetry, with (8.13)

vopt =

√
|m|2
λ

shortly vopt = v (8.14)
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In the Φ2-Φ4 model, the value vopt of the broken symmetry rep-
resents the ground state. In reality, the ground state represents
the vacuum. In the SMEWI and in the SMEP, that value vopt
has been named vacuum expectation value, VEV, see e. g.
(Pich, 2007, S. 4.2), (Zyla, 2020, 11.2). As a result of measure-
ments, the VEV is as follows, see e. g. (Zyla, 2020, S. 11.2.1,
table 1.1):

v =(
√

2 ·GF )−1/2 = 246.1965 GeV ± 0.6 ppm (8.15)

Hereby, GF is the Fermi coupling, Fermi (1933), Zyla (2020).

8.5 Higgs vacuum VEV 6= actual vacuum

In this section, we show that the VEV of the SMEP does not
correspond to the observed density of the vacuum in the uni-
verse. Based on observations, see e. g. Riess et al. (2021),
Planck-Collaboration (2020), the density of the vacuum is as
follows:

ρΛ = ρcr. · Ωλ (8.16)

Thereby, ρcr. is the critical density and Ωλ is the density param-
eter of the vacuum. Hereby, the critical density can be derived
from the Hubble constant H0 as follows, see e. g. Hobson et al.
(2006), Carmesin (2019d):

ρcr. =
3H2

0

8πG
with (8.17)

H0 ∈ [67.36; 73.43]
km

s ·Mpc
thus (8.18)

ρΛ ∈ [5.8 · 10−27; 6.9 · 10−27]
kg

m3
(8.19)

Hereby, the observational values ofH0 are taken from Riess et al.
(2021) and Planck-Collaboration (2020), while the observation
of ΩΛ is taken from Planck-Collaboration (2020)1.

1For an explanation of the variation of H0, see Carmesin (2021d), Carmesin (2021a),
Carmesin (2021c).
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Moreover, based on the SQ, which implies QG, see Carmesin
(2022), the above density has correctly been modeled by quanta
of the vacuum with an energy EΛ, for details see e. g. Carmesin
(2018c), Carmesin (2018b), Carmesin (2019d) or additionally
(Carmesin, 2021a, Eq. 6.6), Carmesin (2021b), or with com-
parison to observation Carmesin (2021c). Thereby, the derived
value of EΛ is as follows:

EΛ = 5.4 · 10−5 eV (8.20)

Accordingly, the VEV is 15 orders of magnitude larger than the
energy of the quanta of the vacuum:

V EV

EΛ
=

v

EΛ
= 5.6 · 1015 (8.21)

Thus, the VEV does not represent the present-day vacuum.

8.6 Unspecific PT of the Higgs mechanism

In this section, we point out that the PT in the Higgs mecha-
nism is very unspecific.

The Higgs mechanism does hardly describe the mechanism
of the symmetry breaking, as the applied theory of phase tran-
sitions by Landau (1937) does only provide a framework of a
variable Φ and powers thereof, Φ2 and Φ4. However, that vari-
able Φ can be applied to each physical system. Thus Φ does
not provide any specific information about the system under
investigation.

8.7 Solution via PT based on SQ

In this section, and based on the SQ, we model the value VEV
in a microscopic manner.

Based on the SQ, the mass mH or energy EH of the Higgs
boson has been derived, (Carmesin, 2021a, THM 9):

Higgs boson : EH = 125.5 GeV (8.22)
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In principle, two objects can form a pair2. Accordingly, we
propose that pairs of Higgs bosons correspond to the VEV.
Thereby, the pair of Higgs bosons exhibits an energy of inter-
action. We model it with the strong interaction.

Thereby, the energy of the interaction depends on the energy
scale Q of the coupling, as observed by inelastic scattering, see
(Zyla, 2020, Fig. 9.3). The energy scale corresponding to the
scattering is expected to be the zero-point energy, ZPE. Based
on the SQ, and in the case of the Higgs boson, the ZPE has
been derived, for details see (Carmesin, 2021a, Eq. 9.7):

ZPEH = 9.22 GeV (8.23)

Based on observation, the corresponding strong coupling is as
follows, see (Zyla, 2020, Fig. 9.3):

αs(ZPEH) = 0.18 (8.24)

The length scale of the distance of the Higgs bosons in the pair
is obtained by the length scale of these bosons:

dr =
h · c
EH

= 9.9 · 10−10 m (8.25)

The corresponding energy is estimated as follows: The basic
energy of electric interaction, dE = − e2

4πε0·dr , is proportional to
the coupling constant α. In the case of the strong interaction,
α is replaced by αs, equivalently, dE is increased by the factor
αs
α , with α ≈ 1

137 :

dE = − e2

4πε0 · dr
· αs
α

(8.26)

By inserting the above values, we obtain:

dE = −2.4 GeV (8.27)

2For instance, many atoms in the atmosphere form pairs or dimers.
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So the energy of the pair of Higgs bosons is as follows:

Epair = 2EH + dE = 247.6 GeV = V EVtheo (8.28)

The above estimate shows that the VEV corresponds approxi-
mately to the energy of a pair of Higgs bosons.

Thereby, the relative difference amounts to

Epair − V EV
V EV

=
247.6− 246.1965

246.1965
= 0.57%, (8.29)

whereas the ratio of the VEV and the energy of a quantum of
present-day vacuum amounts to more than 1015. Accordingly,
we postulate that these pairs of Higgs bosons should be observed
in the future, at a significance larger than 5 σ, of course.

8.7.1 Observation of Higgs boson pairs

Pairs of Higgs bosons have been observed at a significance of 4
σ, see e.g. ATLAS (2021), (Zyla, 2020, S. 11.3.4 or p. 216).

8.7.2 Symmetry breaking of vacuum based on the SQ

In this section, we analyze the symmetry breaking of vacuum
on the basis of the SQ.

8.7.2.1 Wave function

In the SQ, the excitation states of the vacuum are physically
effective at each location, see section (2.5).

In particular, the formation of the VEV, is based on the
Higgs mechanism, see e.g. Zyla (2020), which is based on the
formation of the Higgs boson, see Carmesin (2021a). Hereby,
the formation of the Higgs boson, is based on the formation of
five dimensional vacuum, see Carmesin (2021a). Thereby, the
vacuum corresponds to a wave function, see Carmesin (2022).

Altogether, the formation of the VEV is described by the
wave function in five-dimensional space, ψ5D.



8.7. SOLUTION VIA PT BASED ON SQ 105

Accordingly, the process of formation of the bosons of the
electroweak interaction, as well as the electroweak interaction,
is described by a linear composition of three-dimensional and
five-dimensional wave functions:

ψEWI = a · ψ3D + b · ψ5D (8.30)

Hereby, the energy of a quantum of vacuum in three - dimen-
sional space is EΛ,D=3 = 5.4 · 10−5 eV, see (Carmesin, 2021a,
THM 5). For comparison, the energy of a quantum of vacuum in
four-dimensional space is EΛ,D=4 = 4.077 MeV, see (Carmesin,
2021a, p. 169-170). Moreover, that energy has been emitted at
the last dimensional phase transition during the cosmic unfold-
ing (era of ’cosmic inflation’) from D = 4 to D = 3, and it has
probably been observed in gravitational waves emitted in the
early universe, see Ratzinger and Schwaller (2021). Further-
more, the energy of a quantum of vacuum in five-dimensional
space (essential for the formation of the Higgs boson and for
the formation of the elementary charge) is EΛ,D=5 = 9.22 GeV,
see (Carmesin, 2021a, S. 9.1.3).

As the normalization of the wave function is one in any case,
and since EΛ,D=3 << EΛ,D=5, the three-dimensional vacuum
can be neglected in a very good approximation:

ψEWI ≈ ψ5D (8.31)

8.7.3 Lagrangian derived by SQ

In this section, we show how the symmetry breaking based on
the SQ, see section (8.7.2), is applied to the Lagrangian in Eq.
(8.7), without any additional assumption:

L = −|Dµψ|2 −m2ψccψ (8.32)

8.7.3.1 Potential in L

The potential V has been added in the Higgs mechanism, in
order to describe the symmetry breaking in the SMEP.
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However, in the SQ, the symmetry breaking of the vacuum is
described by the wave function in Eqs. (8.30, 8.31) and section
(2.5).

As a consequence, and in the present case of the phase transi-
tion that enables the formation of masses, the ψ4 term inherent
to the potential V is not needed any more.

Accordingly, the Lagrangian has the following form:

L = −|DµψEWI |2 −m2 · |ψEWI |2 (8.33)

8.8 Derivation of the masses mW and mZ

In this section, we investigate the formation of the masses MZ

and MW . That have been observed, see e.g. Zyla (2020). For
it, we apply the Lagrangian in Eqs. (8.33, 8.6):

L = −|DµψEWI |2 −m2 · |ψEWI |2 with (8.34)

Dµ = ∂µ + igΣα=3
α=1

σα

2
W α

µ + ig′
1

2
Ŷ ·Bµ (8.35)

Note that the hypercharge-number Y can be observed, and cor-
responds to an operator in QP, see e.g. Kumar (2018), Carmesin
(2022). Next, we insert Eq. (8.35) into Eq. (8.33):

L =
1

4
|(2∂µ + i

g

2
Σ3
ασ

αW α
µ + i

g′

2
Ŷ Bµ)〈ψEWI〉|2 −m2|ψEWI |2

(8.36)

More explicitly, we express 〈ψEWI〉 by a two-dimensional vector
in charge space:

|〈ψEWI〉|2 =

∣∣∣∣( 〈ψEWI,1〉
〈ψEWI,2〉

)∣∣∣∣2 (8.37)

Hereby, we apply the symmetry of the state 〈ψEWI〉 with broken
symmetry in charge space. Moreover we use the definition of
the VEV, see e.g. (Weinberg, 1996, 21.3.27), Carmesin (2021a):

|〈ψEWI〉|2 = |〈ψEWI,1〉|2 + |〈ψEWI,2〉|2 = 2|〈ψEWI,1〉|2 = 2v2

(8.38)



8.8. DERIVATION OF THE MASSES MW AND MZ 107

So the vector in Eq. (8.37) can be rotated so that the upper
component is zero. So we derive:

〈ψEWI〉 =

(
0√

2〈ψEWI,1〉

)
=

(
0√
2v

)
(8.39)

Next, we insert Eq. (8.39) into Eq. (8.36):

L =
1

4

∣∣∣∣(2∂µ + igΣ3
ασ

αW α
µ + ig′Ŷ Bµ)

(
0
v

)∣∣∣∣2 −m2|ψEWI |2

(8.40)

In order to derive the formation of the masses MZ and MW ,
we do not need to analyze the partial derivative. Accordingly,
we neglect these derivatives. The corresponding Lagrangian is
named mass term, see (Weinberg, 1996, Eq. 21.3.29):

Lm =
1

4

∣∣∣∣(igΣ3
ασ

αW α
µ + ig′Ŷ Bµ)

(
0
v

)∣∣∣∣2 −m2|ψEWI |2 (8.41)

Next, we use the matrix representation of the hypercharge num-
ber, see e.g. (Weinberg, 1996, 21.3.23):

Ŷ = −
(

1 0
0 1

)
(8.42)

Additionally, we apply the Pauli matrices:

Lm =
−1

4

∣∣∣∣(gW 1
µ − iW 2

µ)

(
v
0

)
− (gW 3

µ + g′Bµ)

(
0
v

)∣∣∣∣2
(8.43)

−m2|ψEWI |2 (8.44)

Next, we evaluate the square. Hereby, the product (gW 1
µ −

iW 2
µ)cc · (gW 1

µ− iW 2
µ) provides the following mixed terms: gW 1

µ ·
(−)iW 2

µ and −(i)ccW 2
µ · gW 1

µ . The sum of these two terms is
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ẽ

κemitted,⊥,−

κemitted,⊥,+
= g′

= gHC

ΘW

qe

qZ

qIqHC

g = gI

ΘW

g0

Figure 8.1: Vector space of sources with coordinates qHC and qI
corresponding to the couplings gHC of the hypercharge and gI of
the isospin. Hereby, perturbations are treated in S. (3.5, 5.1.3,
5.1.4, 5.1.5). g0 is the non-electric component of g.

zero, as a result of the conjugate complex, (i)cc = −1. So we
obtain:

Lm =
v2

4

(
g2|W 1

µ |2 + g2|W 2
µ |2 + |gW 3

µ + g′Bµ|2
)
−m2|ψEWI |2

(8.45)

Similarly as for the couplings g and g′, there are the two short
sides of the right-angled triangle in Fig. (8.1). The fields W 3

µ

and Bµ in the above Eq. (8.45) are the corresponding short sides
of a right-angled triangle with the same angle ΘW . Thereby, the
hypotenuse is the field Zµ. Hereby, the projection of W 3

µ onto
Zµ is cos(ΘW ) ·W 3

µ see Fig. (8.1). Similarly, the projection of
Bµ onto Zµ is sin(ΘW ) · Bµ. These two projections constitute
Zµ, see Fig. (8.1). So the following holds:

Zµ = cos(ΘW ) ·W 3
µ + sin(ΘW ) ·Bµ (8.46)

Using the right-angled triangle in Fig. (8.1), we name the hy-
potenuse gz, and we derive the following relations:

g =gz · cos(ΘW ) and g′ = gz · sin(ΘW ) (8.47)
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|ψEWI |2

x

m2

Figure 8.2: Mass m located at a peak of the wave function.

Next, we apply Eqs. (8.47) to Eq. (8.45):

Lm =
v2

4

(
g2|W 1

µ |2 + g2|W 2
µ |2 + g2

z |W 3
µ cos ΘW +Bµ sin ΘW |2

)
(8.48)

−m2|ψEWI |2 (8.49)

Here, we apply Eq. (8.46) to Eqs. (8.48, 8.49):

Lm =
v2

4

(
g2|W 1

µ |2 + g2|W 2
µ |2 + g2

z |ZµZµ|
)
−m2|ψEWI |2 (8.50)

Additionally, according to the right-angled triangle in Fig. (8.1)
and the theorem of Pythagoras, the following relation holds:

g2
z = g2 + g′2 (8.51)

Usually, gz is expressed according to Eq. (8.51). Thus to Eq.
(8.50) takes the following form:

Lm =
v2

4

(
g2|W 1

µ |2 + g2|W 2
µ |2 + (g2 + g′2)|ZµZµ|

)
−m2|ψEWI |2

(8.52)

In Eq. (8.52), the absolute square |ψEWI |2 represents the
location of the square of the mass m2, see Fig. (8.2). Similarly,
the absolute square |ZµZµ| represents the location of the square
of the mass M 2

Z , see Fig. (8.3). So we derive the mass of the
Z-boson:

M 2
Z =

v2(g2 + g′2)

4
or MZ =

v
√
g2 + g′2

2
=
v|gz|

2
(8.53)
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|ZµZµ|

x

M 2
Z = v2·g2z

4

Figure 8.3: Mass MZ located at a peak of the absolute square of
the field |ZµZµ|.

Analogously, the square (W 1
µ)2 represents the location of the

square of the mass M 2
W , see Fig. (8.3). So we derive the mass

of the W -boson:

(M 1
W )2 =

v2g2

4
or M 1

W =
v|g|
2

= M 2
W (8.54)

Transformation of fields W 1
µ and W 2

µ : The charge of the W -
bosons can be observed. The corresponding fields W−

µ and W+
µ

are derived by the following transformation, see for instance
(Weinberg, 1996, Eqs. 21.3.12, 21.3.13):

W+
µ =(W 1

µ + iW 2
µ)/
√

2 and W−
µ = (W 1

µ − iW 2
µ)/
√

2 (8.55)

We multiply these equations with each other. Additionally, we
multiply the product by two:

2W+
µ ·W−

µ =(W 1
µ)2 + (W 2

µ)2 (8.56)

Accordingly, Eq. (8.52) is represented as follows:

Lm =
v2

4

(
2g2|W+

µ ·W−
µ |+ (g2 + g′2)|ZµZµ|

)
−m2|ψEWI |2

(8.57)

As the transformation does not change the sum M 1
W + M 2

W of
the masses, the mass MW of the W -bosons is as follows, see Eq.
(8.54):

MW+
µ

= MW−µ =
v|g|
2

=: MW (8.58)



8.8. DERIVATION OF THE MASSES MW AND MZ 111

Calculation of the masses: In order to derive and calculate the
masses MW as well as MZ , in Eq. (8.53), we apply the values of
the weak angle and of the elementary charge corresponding to
the energy MW , see Fig. (5.2). Accordingly, we apply the cou-
pling ẽSMEWI,eff(E = 80 GeV), the weak angle at E = 80 GeV
in table (5.2), as well as the V EVtheo and relations correspond-
ing to the triangle in Fig. (8.1):

MZ =
vẽSMEWI,eff

2 sin(ΘW (E)) cos(ΘW (E))
with (8.59)

sin2(ΘW (E)) = 0.2314 at E = 80 GeV (8.60)

ẽSMEWI,eff =ẽ ·
√

4π ·
√

137

129
= 0.312 432 and (8.61)

V EVtheo =247.6 GeV ± 0.57 % (8.62)

So we obtain the following theoretical value of the mass:

MZ,theo = 91.717 GeV (8.63)

The observed value and relative difference are as follows, (Zyla,
2020, p. 31):

MZ,obs = 91.188 GeV ± 149 ppm and (8.64)

∆rel.,MZ ,theo.,obs. = 0.0058 = 0.58% (8.65)

Similarly, we calculate the mass MW in Eq. (8.54), by using
the coupling ẽSMEWI,eff and angle at E = 80 GeV, as well as
the VEV in Eq. (8.15) and the triangle in Fig. (8.1):

MW =
vg

2
=
vẽSMEWI,eff(E)

2 sin(ΘW (E))
(8.66)

So we obtain the following theoretical value of the mass:

MW,theo = 80.409 GeV (8.67)

The observed value relative difference are as follows, (Zyla,
2020, p. 31):

MW,obs = 80.379 GeV ± 149 ppm and (8.68)

∆rel.,MW ,theo.,obs. = ±372 ppm (8.69)
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Altogether, the SQ provides the correct phase transition in the
SMEP. Thereby, the SQ provides a basis for the Higgs mech-
anism. Moreover, the SQ provides the correct masses of the
bosons of the weak interaction. This shows the next THM:

Theorem 10 Phase transition and masses

(1) The PGI is incomplete in SMEP, as the PGI does not pro-
vide the masses of elementary particles in the SMEP.

(2) The incompleteness of the PGI in the SMEP is traditionally
resolved by phase transitions, PT.

(3) In traditional SMEP, these phase transitions are modeled by
the proposed Higgs mechanism.

(3.1) In the Higgs mechanism, the phase with broken symmetry
provides the Higgs field, including the vacuum expectation value,
VEV. That VEV is orders of magnitudes larger than the energy
of the quanta of the present-day vacuum.

(3.2) In the Higgs mechanism, the physical content of the order
parameter of the PT, Φ, the VEV, is not modeled. Instead, the
order parameter of the PT is schematically modeled by a usual
Φ2-Φ4 model of a PT.

(4) In the SQ, the PT is derived, in contrast to the proposed
Higgs mechanism.

(4.1) In the SQ, the mass of the Higgs boson mH has been de-
rived, without using any fit parameter, see Carmesin (2021a).

(4.2) In the SQ, the mass mpair = Epair/c
2 of a bound pair of

Higgs bosons has been derived, see section (8.7):

Epair = 247.6 GeV (8.70)

(4.3) The comparison of the energy Epair of a bound pair of
Higgs bosons in (4.2) with the observed VEV,

V EVobs = 246.1965 GeV (8.71)
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shows a clear accordance of both energies, whereby the relative
difference amounts to 0.57%, see section (8.7).

(4.4) According to items (4.1), (4.2) and (4.3), the phase tran-
sition that causes the formation of the VEV has been explained
on the basis of the SQ in a microscopic and detailed manner.
Thereby, no fit has been executed.

(5) In the SQ, the formation of the masses MW and MZ has been
derived and explained, in precise accordance with observation:

(5.1) In the SQ, the wave function ψEWI describes the formation
of three-dimensional and of five-dimensional vacuum, whereby
the formation of five-dimensional vacuum describes the forma-
tion of mH and of Epair = mpairc

2.

(5.2) In the SQ, the Lagrangian Lm describes the formation of
the masses MW and MZ.

In particular, the derived masses of the bosons of the electroweak
interaction are as follows:

MZ,theo = 91.717 GeV and MW,theo = 81.409 GeV (8.72)

(5.3) The comparison of derived masses MZ,theo and MW,theo

with the corresponding observed masses provides an accordance
with a deviation below 0.6%:

MZ,obs = 91.188 GeV ± 149 ppm and (8.73)

∆rel.,MZ ,theo.,obs. =0.0058 = 0.58% and (8.74)

MW,obs = 80.379 GeV ± 149 ppm and (8.75)

∆rel.,MW ,theo.,obs. =± 372 ppm (8.76)

The difference might essentially be due to the difference between
the theoretical and observed value of the VEV.

(5.4) According to items (5.1), (5.2), and (5.3), the formation
of the masses MW and MZ has been explained on the basis of
the SQ.
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~snucleus

~vW+

~B

~B
~vνe

~vνe

~FL,0 = ~B0,⊥ · vνe · q0,νe
•

first considered case: λ = −1

Figure 8.4: Semiclassical model of parity violation.

8.9 Explanation of parity violation

Goldhaber et al. (1957) showed in β+ decay in a nucleus, that
the helicity λ (sign of product of velocity ~vνe and spin ~sνe) of
a neutrino νe is negative, Fig. (8.4). A semiclassical SQ-model
explains it: During β+ decay, a W+ forms (Griffiths, 2008, S.
2.4.3). Then it decays, whereby it forms the positron e+ and
neutrino νe (dashdotted), with a non-electric charge q0,νe (Fig.
8.1). As W+ and νe have spins parallel to ~snucleus, W

+ and νe
rotate (dotted, dashdotted) and W+ causes a ~B-field (dashed).
As the coupling g has a non-electric component g0, W

+ causes
a non-electric ~B0-field too, according to PGI. ~B0,⊥ is ⊥ to ~vνe.

So, a non-electric Lorentz force acts upon νe: ~FL,0 = ~B0,⊥ ·
vνe · q0,νe. That ~FL,0 favors νe with λ = 1 or −1, so that only
the favored νe forms. As the neutrino with λ = −1 does
form, that sign of ~FL,0 enables neutrino formation. However, if

sign(~vνe) is changed, then sign(~FL,0) is changed, so νe-formation
is disabled. Thus, no νe forms with λ = 1. For the case of
charge conjugation, C, the signs of all components of charges
change, see Carmesin (2021f), whereby q0,W+ = q0,W−. So, νe
in Fig. (8.4) changes to ν̄e with q0,ν̄e = −q0,νe. Thus, sign(~FL,0)
changes. Hence, no ν̄e forms with λ = −1, but ν̄e form with
λ = 1. So, parity violation is explained for all cases of λ and C.



Chapter 9

Derivation of GR

In this chapter, we analyze general relativity, GR, including
possible derivations of the Einstein field equation, EFE, see Eq.
(9.36). Moreover, we use the SQ, in order to derive the EFE.

9.1 Smooth transformations

In this section, we investigate the smooth transformations of
spacetime that are considered in GR.

(Straumann, 2013, S. 3.3.1) pointed out the type of smooth
transformations of spacetime considered in GR:

{xj} →{x̄j} is a (9.1)

smooth coordinate transformation (9.2)

As the theory is assumed to be covariant, see e.g. (Hob-
son et al., 2006, p. 528), a covariant expression for the volume
in spacetime is used, see e.e. (Straumann, 2013, S. 3.3.1):

dV 4 =
√
−g · d4x with g = det(gij) (9.3)

Proposition 3 Smooth transformations of GR

(1) The theory of general relativity, GR, is restricted to the
physics of smooth transformations of spacetime.

(2) The theory of GR does not describe the physics of possible
discontinuous phase transitions, PT, of spacetime.

115



116 CHAPTER 9. DERIVATION OF GR

(3) Most theories of GR treat three-dimensional space.

So these theories of GR do not describe any transformations
to higher dimensional space, though physics in higher dimen-
sional space has been observed directly, see e.g. Lohse et al.
(2018), Zilberberg et al. (2018), and indirectly, see Carmesin
(2017b), or e.g. Carmesin (2018b), Carmesin (2019d), or also
Carmesin (2021a), Carmesin (2021f).

9.2 Derivations based on the PLA or PSA

In this section, we investigate derivations of the EFE that are
based on the principle of least action, PLA. Thereby, that prin-
ciple is generalized to a principle of stationary action, PSA, see
e.g. (Weinberg, 1972, chapter 12 or p. 357-664). Thereby, the
action is stationary, if it is at a local minimum or at a local max-
imum, with respect to infinitesimal variations of the variables
under investigation.

9.2.1 Paths

In this section, we investigate the proposed paths that are
used in order to apply the PLA or PSA.

Usually, a path starts at a time coordinate x0,start, extend in
space without limitation, and ends at a time coordinate x0,end,
see e.g. (Landau and Lifschitz, 1971, § 93). Alternatively, the
path may be generalized to compact regions of coordinates,
these have been named patches, see e.g. (Straumann, 2013,
S. 3.3.1).

Both, a path and a compact region of coordinates are non -
quantized, and both can be interpreted as a semiclassical geo-
metric object that is obtained from rate gravity waves, RGW,
in the limit of zero wavelength, limλ→0. Carmesin (2022) has
shown already for the case of the Schwarzschild solution, that it
can be interpreted and derived as a semiclassical geometric ob-
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ject in spacetime, whereby the semiclassical limit corresponds
to the limit limλ→0 of rate gravity waves, RGWs.

Proposition 4 GR as a semiclassical limit of RGWs

(1) The paths or patches used in GR can be interpreted as semi-
classical geometric objects that occur in the limit of zero wave-
length, limλ→0, of the rate gravity waves, RGW, of the SQ.

(2) In particular, for the case of the Schwarzschild solution,
Carmesin (2022) has shown that the Schwarzschild solution rep-
resents the limit limλ→0 of the RGWs.

9.2.2 Action

In order to apply the PLA or the PSA, Hilbert (1915) pro-
posed the Einstein-Hilbert action, SEH , whereby he used re-
sults provided by Einstein (1911), Einstein (1915b) and Einstein
(1915a), see Corry et al. (1997). So he postulated that action
by a founded guess.

By an application of the PSA to the SEH , the Einstein field
equation, EFE, see Einstein (1915a), can be derived.

In fact, that action is still guessed in a founded manner, see
e.g. (Landau and Lifschitz, 1971, § 93-95), (Weinberg, 1972,
chapter 12), Stephani (1980), Carmeli (1982), (Hobson et al.,
2006, chapter 19), (Straumann, 2013, chapter 3).

9.2.3 Gauge invariance

In GR, the Einstein-Hilbert action SEH is usually obtained by
a founded guess or postulate, see section (9.2.2). In contrast,
in the SMEP, the action is usually obtained on the basis of the
Principle of Gauge Invariance, PGI. In this section, we inves-
tigate, whether the action SEH has also been obtained by the
PGI. This would be nice advantage, since the EFE could be
derived from the same postulate, that is used in the SMEP.



118 CHAPTER 9. DERIVATION OF GR

R

•

~G∗

~G∗

~G∗

~G∗

δR

M

δE

Figure 9.1: A shell with a mass M at its center, with a radius R,
and with a thickness δR has an energy density uf of the field
~G∗ generated by M . Accordingly, the shell has an energy δE.

In fact, various studies of such an application have been elab-
orated. For instance, Lasenby et al. (1998) proposed a gauge
theory of gravity, however, the action SEH is still postulated, see
(Lasenby et al., 1998, Eq. 4.14). Similarly, (Santos, 2019, Eq.
32) worked on the gauge theory of gravity, and he postulated
the action SEH , too.

Accordingly, in a systematic analysis of gauge invariant el-
ements inherent to GR, Giesel et al. (2009) described gauge
invariance in low orders of perturbation theory.

Altogether, the action SEH has not been derived on the basis
of gauge invariance. So the known attempts to derive the EFE
from the SMEP failed.

9.3 EFE derived from the SQ

In this section, we derive the EFE from the SQ in a very trans-
parent manner. For it, we use the Gaussian curvature, as it is
very intuitive and invariant, see Gauss (1827).

(1) Energy density: Based on the PFF and GG, we use the
energy density uf of a gravitational field ~G∗, see (Carmesin,
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2021d, Eq. 2.7)

uf =
|~G∗|2

8πG
(9.4)

(2) Energy in a shell: Using (1), we derive the energy δE in a
shell around a mass or dynamical mass M , whereby the shell
has a radius R and a thickness δR:

δE =uf · 4πR2 · δR or (9.5)

δE =
|~G∗|2

8πG
· 4πR2 · δR (9.6)

Hereby, we apply the area A:

δE =uf · A · δR or (9.7)

δE =
|~G∗|2

8πG
· A · δR with (9.8)

A =4π ·R2 (9.9)

(3) Field: Based on the SQ, we apply the concepts of GG and
PFF, in order to express the field as a function of the mass M :

|~G∗| =G ·M
R2

(9.10)

(4) Chosen radius: Based on SQ, we apply the Schwarzschild
radius RS, see for instance Carmesin (2012), Carmesin (2016),
Carmesin (2021d), Carmesin et al. (2022). For it, we vary the
radius of the shell, according to GG inherent to the SQ. So the
field in (3) is as follows:

|~G∗| =G ·M
R2
S

with (9.11)

RS =
2G ·M
c2

thus (9.12)

|~G∗| =c
2

2

RS

R2
S

=
c2

2

1

RS
(9.13)
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R1

Figure 9.2: Embedding of a sheet of paper in three-dimensional
space: In the left embedding, the two radii of curvature are
infinite, R1 = ∞ and R2 = ∞. In the right embedding, R1 =
1 and R2 = ∞. In both forms of embedding, the Gaussian
curvature K = 1

R1
· 1
R2

is zero. These two forms of embedding
present an example for the invariance of Gaussian curvature K
with respect to embedding, Gauss (1827).

(5) Gaussian curvature K: Next, we apply Eq. (9.12) to Eq.
(9.8):

δE =
1

8πG
· c

4

4
· 1

R2
S

· A · δR (9.14)

Hereby, we identify the radius RS of curvature, as well as the
Gaussian curvature K:

K =
1

R1
· 1

R2
=

1

R2
S

and (9.15)

δE =
1

8πG
· c

4

4
·K · A · δR (9.16)

This intermediate result is very essential:

(5.1) Gauss (1827) showed in his Theorema Egregium that the
Gaussian curvature K is an inner property of the manifold cor-
responding to the shell. That means, the properties of the man-
ifold can be completely obtained by measurements within the
manifold. In particular, these inner properties are not modi-
fied, if the manifold is embedded in various manners in a higher
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dimensional space, see Figs. (9.2, 9.3). Thus K is an invariant
with respect to all possible forms of embedding of the manifold
in a higher dimensional space.

(5.2) The Gaussian curvature K can be transformed to the con-
cept of curvature tensors used in Riemannian manifolds and
utilized in the EFE.

(5.3) The energy δE of the field G∗ in the shell corresponds to
the invariant Gaussian curvature K.

(5.4) Since the thickness δr of the shell can be infinitesimal, the
energy density uf of the field G∗ corresponds to the invariant
Gaussian curvature K.

(5.5) Thus gravity can be described by the field G∗ or by the
invariant Gaussian curvature, whereby the invariant Gaussian
curvature can be transformed to the curvature tensor used in
Riemannian manifolds, see e.g. Lee (1997).

•

Figure 9.3: Invariant Gaussian curvature: At the marked point,
the two radii of curvature are R1 = 2 and R2 = 1. So the
Gaussian curvature is K = 1

R1
· 1
R2

or K = 1
2 ·

1
1 = 1

2 . This
Gaussian curvature K does not depend on the embedding of
the manifold, Gauss (1827).

(6) Sectional curvature: Gaussian curvature K describes the
curvature of a two-dimensional manifold. Next, we generalize
Gaussian curvature to higher-dimensional manifolds. For it, we
consider a two-dimensional submanifold, see e.g. (Lee, 1997,
p. 143-149). Correspondingly, there are two locally orthogo-
nal directions in the submanifold, and these can be described
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by the partial derivatives (∂1, ∂2). If the corresponding radii of
curvature R1 and R2 are equal to a radius of curvature R, then
the sectional curvature can be introduced as follows:

K(II) =
1

R1
· 1

R2
=

1

R2
and (9.17)

Hereby, K(II) marks a Gaussian curvature at a point of a two-
dimensional manifold, with a radius R1 of curvature in the di-
rection corresponding to a partial derivative ∂1, and with a ra-
dius R2 of curvature in the direction corresponding to a partial
derivative ∂2, see e.g. Lee (1997).

(7) Curvature scalar: The Gaussian curvature K in (5), as well
as the sectional curvature in (6), can be expressed by the cur-
vature scalar S as follows, see e.g. (Lee, 1997, Eq. 8.6 and p.
148):

K =
1

R1
· 1

R2
=

1

R2
=
S

2
and (9.18)

K(II) =
1

R1
· 1

R2
=

1

R2
=
S

2
(9.19)

(8) Application of the curvature scalar: Next, we apply the cur-
vature scalar S in (7) to the energy δE in the shell, see Eq.
(9.16). We emphasize that our theory includes higher dimen-
sional space, according to (7):

δE =
1

8πG
· c

4

4
· S

2
· A · δR (9.20)

(9) Including spacetime: While our description in Figs. (9.2,
9.3) is intuitive and geometric, the description in (8) provides
a more algebraic description. Using SR inherent to the SQ, we
can introduce spacetime in a covariant manner with help of the
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sign convention, see Eq. (2.15):

ηij,Cartesian =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (9.21)

We emphasize that our theory includes higher dimensional space
and spacetime, according to Eq. (9.21).

(10) Ricci tensor: The curvature scalar S in (8) can be ex-
pressed by the Ricci tensor Rij or R̂c as follows, see (Lee, 1997,
p. 124):

S =gijRij = trgR̂c (9.22)

Hereby, ĝ and gij represent the metric tensor. As the trace
represents a sum of D = 4 diagonal elements of the tensor,
there occurs a factor four as follows, see (Lee, 1997, p. 125):

Sĝ =D · R̂c = 4 · R̂c (9.23)

In order to apply that Eq. (9.23) to Eq. (9.20) we multiply by
the metric tensor ĝ first:

δE · ĝ =
1

8πG
· c

4

4
· Sĝ

2
· A · δR thus (9.24)

δE · ĝ =
c4

16πG
· R̂c · A · δR (9.25)

(11) Energy density: In order to obtain a similar representation
of both sides of the above Eq. (9.25), we express the energy δE
in terms of uf · A · δR, see Eq. (9.7):

uf · ĝ · A · δR =
c4

16πG
· R̂c · A · δR (9.26)

While uf represents the energy of the field only, there may be
additional energy densities, according to additional physical ob-
jects. In the framework of GR, such additional objects are mod-
eled and must be modeled with an energy momentum tensor T̂
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or Tab. If such a model of additional objects is included, then
uf · ĝ is replaced by T̂ :

T̂ · A · δR =
c4

16πG
· R̂c · A · δR (9.27)

(12) Representation with coordinates: While the tensors in the
above Eq. (9.27) are expressed in the form of tensors marked
by a hat, tensors are often expressed with indices indicating
the coordinates. In this paragraph, we explicate the indices
inherent to Eq. (9.27).

Thereby, T̂ is replaced by Tab. Moreover, the surface A is re-
placed by an infinitesimal surface dAb, so that we can introduce
a corresponding integral representing the surface of the shell in
Fig. (9.1). Accordingly, we replace δR by a vector ka. Corre-
spondingly, we replace R̂c by Rab. So Eq. (9.27)is represented
as follows:∫

Tab · ka · dAb =

∫
c4

16πG
·Rab · ka · dAb (9.28)

According to GG, it is not necessary that the radius is RS, or
that the integral is applied to a sphere. Moreover, the infinites-
imal elements ka · dAb can be chosen in an arbitrary manner.
So the remaining terms must be equal:

Tab =
c4

16πG
Rab (9.29)

(13) Usual form: There are various forms of the EFE, see e.g.
(Landau and Lifschitz, 1971, Eq. 95.8). In order to derive the
traditional form of the EFE, we transform the Ricci tensor Rab

as follows:

Rab =2Rab −Rab (9.30)

The curvature scalar is defined as follows:

R =gβbRβb, (9.31)
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We multiply by gab

gabR =gabg
βbRβb, (9.32)

and we use δβa = gabg
βb:

gabR =δβaRβb = Rab (9.33)

We apply Eq. (9.33) to Eq. (9.30):

Rab =2Rab − gabR (9.34)

We use Eq. (9.34) in Eq. (9.29): So we derive:

Tab =
c4

16πG
(2Rab − gabR) (9.35)

(14) Einstein field equation EFE: We simplify the above Eq.:

Tab =
c4

8πG
(Rab − gabR/2) (9.36)

This is the Einstein field equation, EFE, without any
cosmological constant Λ, see Einstein (1915a). In fact, that
constant Λ has been proposed as a parameter that can be added
to one half of the Ricci scalar, see e.g. Einstein (1917):

Tab =
c4

8πG
(Rab − gab · (R/2 + Λ)) or (9.37)

Later, Perlmutter et al. (1998) and Riess et al. (2000), as well as
Spergel et al. (2007), Smoot (2007), and many others noted in
Carmesin (2021c), observed the dark energy, corresponding to
Λ. Moreover, Carmesin (2018c), Carmesin (2018b), Carmesin
(2019d), Carmesin (2021d), Carmesin (2021a) derived the dark
energy from the SQ or from its implication QG. Hereby, these
derived values of Λ are in precise accordance with observation,
whereby no fit parameter has been applied.
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Theorem 11 EFE derived from SQ and smoothness

(1) The Einstein field equation, EFE, has been derived from the
spacetime-quadruple, SQ:

(2) For it, the smoothness of the transformations of spacetime
has been used:

SQ & smoothness→EFE with (9.38)

Tab =
c4

8πG
(Rab − gab ·R/2) (EFE) (9.39)

Corollary 1 EFE derived from SQ and smoothness

(1) The above derivation of the EFE does not use the forma-
tion of vacuum, FV. Accordingly, the density of the vacuum
ρΛ has not been derived on the basis of the EFE. Moreover, ρΛ

can hardly be derived on the basis of the EFE. In contrast, ρΛ

has been derived on the basis of the SQ, see e. g. (Carmesin,
2022, chapter 4 or THM 11) and with more details (Carmesin,
2021d, sections 6.6, 7.5, 8.5 and 8.6) and together with all
derivable parameters of the SMC Carmesin (2021a) and in com-
parison with many observations including measurements at La-
niakea Carmesin (2021c).

(2) Accordingly to the fact that the above derivation of the EFE
does not use FV, quantum physics, QP, has not been derived
on the basis of the EFE. Moreover, QP can hardly be derived on
the basis of the EFE. In contrast, QP has been derived on the
basis of the SQ, see Carmesin (2022). Hereby the propagation
of the vacuum in terms of rate gravity waves is essential.

(3) For the above derivation of the EFE, the described transfor-
mations of spacetime are restricted to smooth transformations.
Accordingly, phase transitions, PT, of spacetime have not been
derived on the basis of the EFE. Moreover, such PT can hardly
be derived on the basis of the EFE. In contrast, such PT have
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been derived on the basis of the SQ, see e.g. Carmesin (2017b),
Carmesin (2018b), Carmesin (2019d), Carmesin (2021d).

Hereby, five different derivations of such PTs have been elab-
orated. Thereby, the newest derivation is presented in Carmesin
and Schöneberg (2022).

(4) The above items (1), (2) and (3) indicate three cases of
incompleteness of the EFE and of GR, see sections (9.4, 9.5,
9.6). These cases of incompleteness of GR point out essential
limitations of GR. Thereby, GR has been and still is a very
successful theory in its domain of validity.

9.4 First incompleteness of GR

In this section, we compare GR and the SQ with respect to the
derivation of the density of the vacuum ρΛ.

As a matter of fact, ρΛ has not been derived on the basis
of GR or in the basis of the EFE. Moreover, the present-day
GR does neither provide semiclassical objects corresponding to
the vacuum, nor does GR provide quantum objects correspond-
ing to the vacuum, see e.g. Einstein (1915a), Landau and Lifs-
chitz (1971), Weinberg (1972), Hobson et al. (2006), Straumann
(2013).

As a derivation of the density of the vacuum ρΛ is missing
in GR, the EFE and GR are incomplete with respect to the
density of the vacuum ρΛ.

In contrast, the SQ provides semiclassical as well as quantum
physical derivations of the density of the vacuum ρΛ, see e.g.
corollary (1 number (1)) or (Carmesin, 2021d, sections 6.6, 7.5,
8.5 and 8.6). Thus SQ is more general than GR.

9.5 Second incompleteness of GR

In this section, we compare GR and the SQ with respect to the
derivation of quantum physics, QP.
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As a matter of fact, QP has not been derived on the basis of
GR or in the basis of the EFE. Moreover, the present-day GR
does not provide quantum objects, see e.g. Einstein (1915a),
Einstein et al. (1935), Landau and Lifschitz (1971), Weinberg
(1972), Hobson et al. (2006), Straumann (2013).

As a derivation of QP is missing in GR, the EFE and GR
are incomplete with respect to the derivation of QP.

In contrast, the SQ provides a derivation of QP, see e.g.
corollary (1 number (2)) or Carmesin (2022). Thus SQ is more
general than GR.

9.6 Third incompleteness of GR

In this section, we elaborate a third incompleteness of GR.
The present-day light horizon Rlh has been analyzed as a func-
tion of time, see Fig. (9.4). For it, the values of Rlh(t) at
earlier times have been derived in the framework of GR, see
e.g. Carmesin (2019d), Carmesin (2020e), Carmesin (2021d),
Carmesin (2021a), Heeren et al. (2020).

According to the laws of physics, the density cannot be larger
than the Planck density ρP = 5.155 · 1096 kg

m3 , and lengths as
small as the Planck length LP = 1.616 · 10−35 m can be ob-
served, see e.g. Carmesin (2017b), Carmesin (2019d), Carmesin
(2021a). Moreover, corresponding to the laws of physics, the
length can be as small as the Planck length, see e.g. Carmesin
(2017b), Carmesin (2019d), Carmesin (2021a).

Next, we compare the time evolution of the density ρ(t) and
of the value of Rlh(t) of the light horizon in the universe. In
the framework of GR, the Planck density ρP = 5.155 · 1096 kg

m3 is
already achieved, when Rlh(t) is approximately equal to 0.003
mm, see Fig. (9.4). As a consequence, GR is not complete, as
GR does not describe the full physically possible time evolution
of Rlh(t), ranging from the Planck length LP = 1.616 · 10−35 m
to the present day light horizon Rlh ≈ 4.1 · 1026 m.
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Figure 9.4: Density limit of expansion of space: The time evolu-
tion of Rlh according to the GR (◦) ranges from the present-day
value 4.14 · 1026 m backwards to 0.003 mm, as at this point the
density (�) achieves the Planck density ρP = 5.155 · 1096 kg

m3

(dashdotted), and no higher density is physically possible.
However, the physically possible lengths can be as short as the
Planck length LP (loosely dotted). Hence the time evolution of
the GR is incomplete.
In contrast, we derive the complete time evolution of Rlh(t),
ranging from the current value 4.14 · 1026 m backwards to LP .
For it we apply GR (◦) combined with dimensional phase transi-
tions (4) derived by quantum gravity. Thereby, the phase tran-
sitions cause the extremely rapid distance enlargement in
the early universe
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Proposition 5 Incompleteness of GR

(1) The theory of general relativity, GR, describes the time evo-
lution of the light horizon Rlh(t) ranging from Rlh ≈ 0.003 mm
towards the present day light horizon Rlh ≈ 4.1 · 1026 m.

(2) However, the physically observable lengths range from the
Planck length LP = 1.616 · 10−35 m towards the present day
light horizon Rlh ≈ 4.1 · 1026 m.

(3) So GR is incomplete.

9.7 Solution of 3rd incompleteness of GR

Carmesin (2017b) discovered dimensional phase transitions that
solve the incompleteness of GR. Thereby, the phase transitions
have been modeled in a van der Waals type model in Carmesin
(2017b), or in Carmesin (2018b), Carmesin (2019d), Carmesin
(2020e).
Moreover, these dimensional phase transitions have been con-
firmed by the time evolution of dark energy, see e.g. Carmesin
(2018c), or in Carmesin (2018b), Carmesin (2019d), Carmesin
(2021d), Carmesin (2021a).

Furthermore, these phase transitions have been confirmed
by Bose gas model, see e.g. Carmesin (2021d), Sawitzki and
Carmesin (2021).

Additionally, these phase transitions have been confirmed
by an analysis of the connectivity of locations in space, see
Carmesin (2021d).

Moreover, these phase transitions have been confirmed by a
droplet model, see Carmesin and Schöneberg (2022).

Thereby, the results are based on the SQ, and no fit has been
applied. The phase transitions are marked by the triangles in
Fig. (9.4).
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Theorem 12 Third incompleteness of GR solved by SQ

(1) The third incompleteness of GR, see PROP (5), is solved
by the SQ.

(2) Thereby, the rapid increase of distances in the early universe
has been explained. Thus the so-called era of ’cosmic inflation’
has been explained by dimensional phase transitions of the vac-
uum or of dark energy, derived in the SQ.

(3) These dimensional phase transitions have been derived by
five very different and independent models in SQ. Thereby, the
results are based on the SQ, no fit has been applied, and pre-
cise accordance with observation has been achieved, see e.g.
Carmesin (2021d), Carmesin (2021a).

(4) In particular, the formation of the sum of the neutrino
masses, the formation of the mass of the Higgs boson, as well
as the elementary charge have been derived in the framework of
these phase transitions. Thereby, the results are based on the
SQ, no fit has been applied, and precise accordance with obser-
vation has been achieved, see e.g. Carmesin (2021a), Carmesin
(2021f).

(5a) GR is included in the SQ, as GR has been derived from the
SQ, see THM (11).

(5b) SQ is more general than GR, as the SQ solves the three
cases of incompleteness of GR, see sections (9.4, 9.5, 9.6) or
PROP (5).
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Chapter 10

Discussion

10.1 Results

In this section, we summarize results derived from the SQ.

(1) The observed expansion of the universe since the Big Bang is
based on the formation of vacuum. The present-day vacuum
at Earth is constituted by vacuum that has formed since the
Big Bang and at all places within the light horizon Rlh. Thus,
Rlh is inherent to the structure of the present-day vacuum and
of its density1, ρΛ.

(1.1) In the SQ, the formation of vacuum provides the struc-
ture of the present-day space, time and spacetime. Thus, the
present-day space, time and spacetime are not assumed, but
derived, see THM (1).

(1.2) In the SQ, quantum physics, QP, and quantum gravity,
QG, have been derived and explained, see Carmesin (2022).
Thus, QP and QG are not assumed, but derived.

(1.2) The four principles of the SQ have two foundations:
observation and thought experiment, see section (2.1).

1That density has been derived on the basis of the SQ, and it is in precise accor-
dance with observation, see THM (1) or e.g. Carmesin (2018c), Carmesin (2018b),
Carmesin (2019d), Carmesin (2019b), Carmesin (2021d), Carmesin (2021a), Carmesin
(2021b), Carmesin (2021c), Carmesin (2022).
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(2.1) In the early universe, the vacuum exhibited a series of
dimensional phase transitions.

(2.2) Thereby, the quanta of vacuum took corresponding zero-
point energies, ZPEΛ,D, see Figs. (2.6, 2.8). These ZPEΛ,D are
present at all times and locations, as a consequence of the struc-
ture of vacuum in (1), see THM (1) and PROP (2). Thus, these
energies ZPEΛ,D represent a large scale excitation spec-
trum of vacuum2.

(3) In addition to the large scale excitation spectrum of vac-
uum in (2), there are intermediate scale excitation states corre-
sponding to symmetries of tensors. In particular, a longitudinal
unidirectional quantum of vacuum represents a most simple
excitation, ZPElongitudinal,D. Moreover, harmonic oscillations
provide small scale excitation states, see Carmesin (2021a).

(4) A triple of the most simple excitation ZPElongitudinal,D

in (3) can bind. Thereby, the triple of ZPElongitudinal,D can
form a most simple 3D-object in three-dimensional vacuum,
see Carmesin (2021a).

(5) If a triple of ZPElongitudinal,D=5 in (4) has the lowest pos-
sible energy, then the triple has the energy EH = mH · c2 of
the Higgs boson, see Carmesin (2021a).

(6) Each of the three longitudinal quanta (see (3)) of the triple in
(4) causes forced oscillations of the other two quanta. These
forced oscillations emit transverse fields G∗i→j. These forced
oscillations and fields G∗i→j cause an interaction according to a
charge ẽtheo. Thereby, ẽtheo is equal to the observed elementary
electric charge ẽobs. Thereby, the difference between theory and
observation amounts to 5.4 · 10−8, whereby no fit is used, see
Carmesin (2021f).

(7) Moreover, these forced oscillations and fields G∗i→j provide

2See e.g. Carmesin (2018c), Carmesin (2018b), Carmesin (2019d), Carmesin (2019b),
Carmesin (2021d), Carmesin (2021a).
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two components, κemitted,⊥,− and κemitted,⊥,+, see Fig. (5.1)
and Carmesin (2021f).

(8) The charge ẽ in (6) and its two components κemitted,⊥,− and
κemitted,⊥,+ establish a triangle, whereby ẽ and κemitted,⊥,+ en-
close an angle Θ. Comparison with observation shows that this
angle Θ is equal to the weak angle ΘW of the weak interac-
tion, see Figs. (5.1, 5.2) and THM (5). Thus, the weak angle is
explained via SQ.

(9) The triangle in (8) spans a two-dimensional charge space,
see Fig. (6.1) and THM (5).

(10) In 2D charge space, there occur the two couplings g′ =
κemitted,⊥,+ = ẽ/ cos ΘW and g = ẽ/ sin ΘW . Moreover, in 2D
charge space, there occurs the isospin, see Fig. (6.2) and THM
(5). Comparison with the SMEWI shows that g′ represents the
hypercharge, while g represents the isospin charge. Hereby,
perturbations are treated in S. (3.5, 5.1.3, 5.1.4, 5.1.5).

(11.1) In 2D charge space, the couplings g′ and g can be trans-
formed to couplings ẽ and gz =

√
g2 + g′2. Hereby, ẽ is the

elementary electric charge, while gz represents the non-
electric charge. see Fig. (6.2) and THM (5).

(11.2) The hypercharge g′ and isospin charge g in (10) or the
transformed pair of the elementary electric charge ẽ and the
non-electric charge gz in (11.1) are the electroweak charges.

(12) The isospin in (10) corresponds to the gauge group SU(2)
of isospin, as a consequence of the SQ, see THM (8).

(13) On the basis of the SQ, and in a semiclassical limit that
provides paths, the principle of least action, PLA, has been
derived, see THM (6).

(13.1) The PLA can be generalized to the principle of sta-
tionary action, PSA.

(13.2) On the basis of the SQ, and on the basis of the deriva-
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tion of QP in (1.2), and in a semiclassical limit, which provides
paths, the principle of gauge invariance, PGI, has been
derived, see THM (7).

(14) Triples with mass mH in (5) can form pairs. Comparison
with the observed vacuum expectation value VEV shows, that
a pair has the energy of VEV, Epair = V EVobs, see THM (10).

(15) The formation of Epair corresponding to the V EVobs in
(13) is explained by the large scale excitation spectrum
in (2.2) and by phase transitions in (2.1).

(16) Thus, the phase transition modeled by the Higgs mecha-
nism in the SMEWI and SMEP, has been explained by the
phase transitions in (2.1).

(16.1) Thereby, the phase transitions in (2.1) provide energies,
electroweak charges as well as a founded and predictive unifica-
tion of cosmology and elementary particle physics.

(17) On the basis of the SQ, and in a semiclassical limit, which
provides paths, the PSA, the PGI and the electroweak charges
have been derived. On that basis, the isospin symmetry (THM
8), and the isospin doublets (THM 9) have been derived. More-
over, on that basis, the electroweak Lagrangian can be de-
rived (Eqs. 8.30, 8.31, 8.36).

(18) The electroweak Lagrangian in (17), combined with the
phase transitions in (2.1), provide masses of the bosons of
the electroweak fields or potentials W−

µ , W+
µ and Zµ:

MW,theo and MZ,theo. These masses are in accordance with the
observed masses MW,obs and MZ,obs. Hereby, the difference be-
tween theory and experiment is below 0.6%, whereby no fit has
been executed, see THM (10).

(19) Altogether, the SQ provides the essential results of the
SMEWI, of GR and beyond:

(19.1) Moreover, the SQ provides explanations and values for
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the following structures or quantities of the SMEWI: the 2D
charge space, the values of the electroweak charges, the value
of the weak angle, as well as the values of the VEV, MW,theo

and MZ,theo. Thus the SQ provides essential results beyond the
traditional SMEWI.

(19.2) Similarly, the SQ provides a derivation of general rela-
tivity, GR, including the EFE, see THM (11).

(19.3) Moreover, the SQ provides solutions to three essential
cases of incompleteness of GR, see chapter (9), in particular
Fig. (9.4), PROP (5) and THM (12).

(20) Inherent to the above results are the answers to the ques-
tions in chapter (4).

10.2 Local derivation of global space

In this section, we summarize how global space forms on the
basis of the local principles of SQ in my theory of vacuum.

(1) The SQ implies QP and QG, see Carmesin (2022).

(2) QG implies the following: curvature parameters kj of pairs
j of objects can be analyzed, the average [kj] is equal to the
curvature parameter k, [kj] is equal to zero, or k = 0. Thus,
space is flat at this average, see (Carmesin, 2020e, S. 4.8).

(3) According to the SQ, the present-day vacuum at Earth is
constituted by vacuum that formed since the Big Bang at loca-
tions ranging from Earth towards the light horizon.

(4) The present-day vacuum in (3) has been derived on the basis
of the average flatness of space in (2). Thereby, the density of
the vacuum in a homogeneous universe has been derived in a
semiclassical manner with the following result, see (Carmesin,
2022, THM 11) or (Carmesin, 2021d, THM 21):
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ρΛ,h.c. =
1

4πGt2H
, whereby tH is the Hubble time (10.1)

Note that the density of vacuum amounts to more than 66 %
of the energy and mass of the present-day universe.

(5) The heterogeneity in the universe causes that the density
ρΛ of the present-day vacuum is a slight modification of the
vacuum in (4), see (Carmesin, 2021d, S. 7.5).

(6) Based on the SQ, local modifications of the vacuum have
been derived with the rate gravity scalar, RS, a DEQ, see for
instance Carmesin (2021d).

(7) Based on the SQ, and on the smoothness assumption, local
modifications of the vacuum have been derived by deriving the
EFE, see chapter (9).

(8) Based on the formed vacuum in the SQ, curvature described
by the EFE has been derived and explained, Carmesin (2021d).

Altogether, averaged curvature, the density ρΛ of present-day
vacuum, as well as local modifications of the vacuum have been
derived on the basis of the SQ in my theory of vacuum.

10.3 Derivation of the spectrum of vacuum

In this section, we summarize how the spectrum of the vacuum
has been derived on the basis of the local principles of SQ in
my theory of vacuum.

(1) The SQ implies QP, including the Schrödinger equation,
SEQ, see Carmesin (2022).

(2) The SQ implies QG, see Carmesin (2022).

(3) The SQ implies black holes and the Schwarzschild radius
RS, see e.g. Carmesin (2019d), Carmesin (2022).

(4) QG implies the Friedmann-Lemâıtre equation, FLE, about
the expansion of space. Thereby, the FLE has been derived for
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dimensions of spaceD ≥ 3, in a completely natural manner3, see
Friedmann (1922), Lemaitre (1927) and e.g. Carmesin (2017b),
Carmesin (2020f), Carmesin (2020e), Carmesin (2021d).

(5) The FLE in (4) combined with the observed present - day
time after the Big Bang, see for instance Planck-Collaboration
(2020), implies the present-day light horizon, Rlh, see Carmesin
(2019d), Carmesin (2020f), Carmesin (2021a).

(6) The black holes in (3) combined with the SEQ in (1) imply
that the Planck length LP is the smallest length that can be ob-
served by a single observation, see Carmesin (2019d), Carmesin
(2020f), Carmesin (2021d), Carmesin (2021a).

(7) The Planck length LP in (6), combined with the present-
day light horizon in (4), further combined with the FLE in (3),
imply a sequence of dimensional phase transitions as well as the
dimensional horizon Dhori, see for instance Carmesin (2017b),
Carmesin (2019d), Carmesin (2020f), Carmesin (2021d), or e.g.
Carmesin (2021a).

(8) The SEQ in (1) describes the rate gravity waves, RGWs, of
vacuum, see Carmesin (2022).

(9) The dimensional horizon Dhori in (7), combined with the
RGWs in (8), imply the energy spectrum of the RGWs for di-
mensions ranging from D = 3 towards Dhori, see Figs. (2.8, 9.4,
2.6) and e.g. Carmesin (2017b), Carmesin (2019d), Carmesin
(2020f), Carmesin (2021d), Carmesin (2021a).

Altogether, the SQ implies the solution of the SEQ, correspond-
ing the solution of the DEQ of the RGWs. The energy spec-
trum of that solution is the spectrum of the zero-point ener-
gies ZPEΛ,D illustrated in Fig. (2.8) and presented in Eq.
(2.90). According to the SQ, in addition to that energy spec-
trum ZPEΛ,D, there are excitation states of vacuum caused

3Remind that physics at D > 3 has been observed, see Lohse et al. (2018), Zilberberg
et al. (2018).
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by a change of the (tensor) symmetry or by harmonic oscilla-
tions, see e.g. Carmesin (2021d), Carmesin (2021a), Carmesin
(2021f).

10.4 Explanation of units in SMEWI

The elementary electric charge ẽ has the correct value in ta-
ble (11.5), according to observation, see Millikan (1911), and
according to our derivation, see Carmesin (2021f). Moreover,
the couplings g, g′ and gz have been derived and explained on
the basis of the elementary electric charge ẽ, see chapters (5,
6). Thus g, g′ and gz represent elementary charges of the
electroweak interaction. In particular, g, g′ and gz are de-
termined on the basis of ẽ, without the factor

√
4π used in the

SMEWI, see e.g. Weinberg (1996) or section (3.5).

Based on the fundamental structure of the unification of cou-
pling constant and charge in ẽ =

√
α, the interaction force F

of two elementary electric charges at a distance r is equal to
F = ẽ · [ẽ/r2], whereby the rectangular bracket represents the
field, see e.g. Carmesin (2021f). Accordingly, the interaction
force F of two elementary charges of the electroweak interac-
tion g at a distance r is equal to F = g · [g/r2]. Using the
SMEWI units, that energy is increased by the factor 4π. Ac-
cordingly, that factor 4π represents the integration of all angles.
That integration represents the fact that all field lines remain
at a very small region of interaction, as a result of very effective
screening:

4π · F =

∫
dA · F =

∫
dAg · [g/r2] or (10.2)

4π · F =4πr2 · g · [g/r2] = 4π · g2 = g2
SMEWI with (10.3)

gSMEWI =g ·
√

4π (10.4)
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Analogously, we can derive the other SMEWI - couplings:

g′SMEWI =g′ ·
√

4π and gz,SMEWI = gz ·
√

4π (10.5)

The integration
∫
dA is not essential in the analysis of the two-

dimensional charge space in chapters (5, 6). However, it is
essential in the formation of mass in chapter (8). That pro-
cess takes place at very short distance, corresponding to the
very effective screening that restricts the weak interaction to
very short distances. At larger distances, the two components
κemitted,⊥,+ = g′ and κemitted,⊥,− (parallel to gz) combine, in order
to minimize energy, see Carmesin (2021f). Thus κemitted,⊥,+ = g′

and κemitted,⊥,− form the elementary electric charge ẽ, discovered
at large distance by Millikan (1911).

10.5 Outlook

The SMEWI as well as the SMEP represent theories that are
very successful at energies of the present-day accelerators of ca.
13 TeV, see e.g. Zyla (2020). In contrast, the SQ with its impli-
cation of quantum gravity represents a deeply founded theory
ranging from the Planck scale LP towards the light horizon, cor-
responding to energies ranging from 10−31 eV towards 1016 TeV.
In that huge interval of energies, a series of 299 phase transi-
tions has been derived and explained, see Figs. (2.6, 9.4) or e.g.
Carmesin (2020f). These phase transitions took place in the
early universe, they explain the era of ’cosmic inflation’, they
explain the dark energy, and they establish a present-day excita-
tion spectrum underlying the formation of elementary particles
and fundamental interactions. Thereby, essential parameters
and mechanism are provided in precise accordance with obser-
vation, whereby no fit is executed.

Thus, the derived elementary particles and fundamental in-
teractions provide a fundamental link between the early uni-
verse and elementary particle physics, as asked for in (Zyla,
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2020, S. 11.8). Moreover, the detailed and huge energy spec-
trum corresponding to the 299 phase transitions, as well as the
additional spectra based on tensor symmetries and harmonic
oscillations, form the base for new physics to be discovered.

Hereby, the combined advanced experts and technologies of
observation in elementary particles physics as well as in the
space sciences constitute a promising basis. With it, the possi-
ble discoveries can be achieved, that have been outlined by the
dynamics of the vacuum with its variety of excitation states,
full of new properties and new physics.



Chapter 11

Appendix

11.1 Universal constants

In this section we present universal constants. Hereby, ε0 is not
a fundamental constant, as it can be derived from fundamental
constants.

quantity observed value reference

G 6.674 08(31) · 10−11 m3

kg·s2 Tanabashi et al. (2018)

c 299 792 458 m
s , exact Tanabashi et al. (2018)

h 6.626 070 15 · 10−34 Js, exact Newell et al. (2018)

kB 1.380 649 · 10−23 J
K , exact Newell et al. (2018)

ε0 8.854 187 817 · 10−12 F
m Tanabashi et al. (2018)

Table 11.1: Universal constants ((Newell et al., 2018, table 3),
(Tanabashi et al., 2018, table 1.1)).

Additionally, in this section, we present used abbreviations.
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abbreviation full text reference

DEQ differential equation C. (1)

EEP Einstein equivalence principle S. (2.4)

EFE Einstein field Eq. Eq. (9.36)

FV formation of vacuum S. (2.4)

GEP Galileo’s equivalence principle S. (2.4)

GG Gaussian gravity S. (2.4)

GR general relativity S. (2.4)

LFV locally formed vacuum S. (2.4)

PFF principles of free fall S. (2.4)

PFP principles of free propagation S. (2.4)

PGI principle of gauge invariance S. (3.2)

PLA principle of least action S. (3.1)

PSA principle of stationary action S. (9.2)

PT phase transition S. (8.3)

QFT quantum field theory C. (7)

QG quantum gravity C. (2)

QP quantum physics C. (1)

SEQ Schrödinger equation S. (2.4.3)

SMC SM of cosmology C. (1)

SMEP SM of elementary particles C. (1)

SMEWI SM of electroweak interaction C. (1)

SM standard model C. (1)

SQ spacetime-quadruple Eq. (2.4)

SR special relativity C. (1)

Table 11.2: Abbreviations. Further abbreviations are represented
in the glossary.
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11.2 Natural units

Planck (1899) introduced Planck units. We mark quantities in
natural units by a tilde, see Tab. 11.3 or Carmesin (2019d).

physical entity Symbol Term in SI-Units

Planck length LP

√
~G
c3 1.616 · 10−35 m

Planck time tP
LP
c 5.391 · 10−44 s

Planck energy EP

√
~·c5
G 1.956 · 109 J

Planck mass MP

√
~·c
G 2.176 · 10−8 kg

Planck volume VD,P LDP

Planck volume, ball V̄D,P VD · LDP
Planck density ρP

c5

G2~ 5.155 · 1096 kg
m3

Planck density, ball ρ̄P
3c5

4πG2~ 1.2307 · 1096 kg
m3

Planck density, ball ρ̄D,P
MP

V̄D,P

Planck temperature TP TP = EP
kB

scaled volume ṼD
V̄D,P
V̄D

scaled energy Ẽ E/EP E = Ẽ · EP

scaled density ρ̃D
M̃
r̃D= Ẽ

r̃D ρD = ρ̃D · ρ̄D,P
scaled length x̃ x/LP x = x̃ · LP
Planck charge qP

√
4πε0 · ~ · c 11,71 e

scaled charge q̃ q̃ = q
qP

Table 11.3: Planck - units.
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11.3 Observed macroscopic values

quantity observed value reference

H0 in km
s·Mpc 67.36± 0.54 (0.8 %) [CMB]

ΩΛ 0.6847± 0.0073 (1.1 %) [CMB]

ΩK 0.0007± 0.0019 [CMB]

zeq 3402± 26(0.76%) [CMB]

ΩM 0.3153± 0.0073(2.3%) [CMB]

Ωr 9.265+0.288
−0.283 · 10−5 (3.1 %) [CMB]

σ8 0.8057± 0.008(1%) [CMB]

ρcr,t0 in kg
m3 8.660+0.137

−0.137 · 10−27 (1.6 %) [CMB]

ρ̃cr,t0 7.037 · 10−123 [CMB]

ρ̃v,t0 4.8181 · 10−123 [CMB]

Ωb 0.0493± 0.00032 [CMB]

Ωc 0.2645± 0.0048 [CMB]

Rlh 4.1412 · 1026 m [C2019]

TCMB 2.7255(6)(0.02%) K [T2018]

ΩCMB 5.4501 [C2021]

Ων 3.8742 · 10−5(9.7%) [C2021]

1 Mpc 3.085 677 581 49 · 1022 m [Z2020]

Table 11.4: Observations: [CMB] marks data based on the CMB
((Planck-Collaboration, 2020, table 2)), in particular based on
the modes TT, TE, EE, the low energy and lensing. Quantities
with a tilde are presented in natural units alias Planck units (see
subsection 11.2). [Z2020], see (Zyla, 2020, table 2.1). [T2018],
see Tanabashi et al. (2018). [C2019] is based on an evalua-
tion in Carmesin (2019d). [C2021] is based on an evaluation in
Carmesin (2021a).
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11.4 Observed microscopic values

quantity observed value reference

mH/c
2 in GeV 124.51− 126.02 [Z2020, F. 11.4]

VEV, v in GeV 246.1965 [Z2020]

MW in GeV/c2 80.379± 0.0123 [T2018, p. 33]

MW/MZ 0.88153± 0.00017 [T2018, p. 33]

sin2 θW 0.231 22(4) [T2018, p. 127]

sin2 θW (E) S. (3.5, 5.1.5)

ẽ 0.085 424 548 [T2018]

α = ẽ2 7.297 352 5664(17) · 10−3 [T2018]

ẽSMEWI

√
4π · ẽ [W1996]

ẽSMEWI,eff

√
137/129 · ẽSMEWI [W1996]

coupling g′ g′ =
ẽSMEWI,eff (E)

cos θW (E) C. (6)

coupling g g =
ẽSMEWI,eff (E)

sin θW (E) C. (6)

y hypercharge-number [Z2020]

g′ · y hypercharge [Z2020]

g · ~̂σ/2 isospin [W1996]

ŶL, ŶR Eqs. (8.3, 8.4, 8.5) [W1996]

Table 11.5: Observations: [Z2020] is based on Zyla (2020).
[T2018] is based on Tanabashi et al. (2018). [W1996] is based
on Weinberg (1996).
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11.5 Glossary

Words marked bold face can usually be found in the glossary.

Abbreviation: S. (section), C. (chapter), DEF. (def-
inition), PROP. (proposition), THM. (theorem).

Big Bang: Start of time evolution of visible space

causal horizon: light horizon

two-dimensional charge space: see table (11.5)
and Figs. (5.1, 6.1, 6.2)

CMB, Cosmic Microwave Background: Radia-
tion emitted at z ≈ 1090. (Tab. 11.4)

classical electrodynamics: see e.g. Landau and
Lifschitz (1971)

complete time evolution of spacetime: Evolution
of the light horizon Rlh(t) ranging from the Planck
- length LP to the actual light horizon Rlh(t0)

cosmic unfolding: It causes the very rapid dis-
tance enlargement in the early universe

cosmological constant: Λ corresponds to the dark
energy with its density ρΛ (Tab. 11.4).

coupling constant α of electrodynamics: see ta-
ble (11.5).

couplings g and g′ of electroweak interaction:
These couplings correspond to the charges of elec-
troweak interaction, see table (11.5).

curvature parameter: the curvature parameter k
describes the global curvature of space, see e.g.
Carmesin (2021d)

dark energy: Energy of the cosmological density of
the vacuum ρΛ (Tab. 11.4).



11.5. GLOSSARY 149

density, critical: ρcr,t0 or ρcr (Tab. 11.4 or for in-
stance Carmesin (2021d))

density, critical, at a dimensional transition:
ρ̃D,c

density parameter: Ωj = ρj/ρcr,t0 (Tab. 11.4)

density, vacuum: ρΛ = ΩΛ · ρcr,t0 (Tab. 11.4)

dimensional distance enlargement factor: A fac-
tor ZD+s→D occurs at a dimensional phase transi-
tion from a dimension D+s to a dimension D and
describes the corresponding increase of distances,
see e.g. Carmesin (2021d))

dimensional horizon Dmax or Dhorizon or Dhori: It
is the maximal dimension that the space within the
actual light horizon can have achieved in the past.
Thereby the following transformations of space are
essential: the isotropic scale and the enlargement
of distance caused by a dimensional phase transi-
tion, see e.g. Carmesin (2021d))

dimensional phase transition: Change of spatial
dimension D, see e.g. Carmesin (2021d))

dimensional unfolding: Series of dimensional phase
transitions in the early universe, see Figs. (2.6,
9.4) or e.g. Carmesin (2021d))

dynamical mass: M = E
c2

elementary charge ẽ:, see table (11.5) or Landau
and Lifschitz (1971), Feynman (1985)

expansion of space: The expansion of the universe
since the Big Bang is caused by an increase of
the amount of vacuum, see for instance Carmesin
(2021d).
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very rapid distance enlargement in the early
universe: Guth (1981) conjectured that factor,
the factor has been explained by dimensional phase
transitions in this book and by Carmesin (2017b),
Carmesin (2019d)

forced oscillation: Forced oscillations are essential
for the charge formation mechanism, see Carmesin
(2021f), Landau and Lifschitz (1976).

frame: Each observation apparatus is localized in
spacetime. That localization establishes a frame.

gamma matrices:

γ0 =

(
I 0
0 −I

)
and γ1 =

(
0 σ1

−σ1 0

)
(11.1)

γ2 =

(
0 σ2

−σ2 0

)
and γ3 =

(
0 σ3

−σ3 0

)
(11.2)

γ5 =

(
I 0
0 I

)
and I =

(
1 0
0 1

)
(11.3)

gravitational field: G∗, see e.g. Carmesin (2021d))

Higgs boson: see C. (8)

Higgs mechanism: see C. (8)

horizon: Global limit of visibility, see e.g. Carmesin
(2021d))

Hubble - parameter: H = ȧ
a , see e.g. Carmesin

(2021d))

Hubble - constant: H0 = H(t0) Hubble parameter
at t0, for details see Carmesin (2021d), Carmesin
(2021c)

hypercharge: see table (11.5) and Figs. (5.1, 6.1,
6.2)
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incomplete: A theory that does not describe the
physically known objects or properties is incom-
plete

isospin: see table (11.5) and Figs. (5.1, 6.1, 6.2)

light horizon, actual: Rlh = 4.142 · 1026 m (Tab.
11.4)

natural units: Planck - units (Tab. 11.3)

Planck scale: At that scale there occurs the length
limit and the density limit in nature. Accord-
ingly, natural units or Planck units have been in-
troduced (Tab. 11.3).

quantum electrodynamics, QED: see e.g. Feyn-
man (1985), Landau and Lifschitz (1982)

very rapid enlargement of distances: see for in-
stance Carmesin (2021d))

RGW, rate gravity wave: Carmesin (2021d)

rate of the formation of vacuum: see for instance
Carmesin (2022)

scaled emitted transverse field: C. (1)

Schwarzschild radius RS: At this radius the escape
velocity is equal to c

SMEP, Standard Model of Elementary Particles: (C.
1)

spacetime: Combination of space and time, see e.g.
Carmesin (2021d)

time evolution of the vacuum: C. ( 1)

transverse emitted field: C. (1)

unfolding, dimensional: Space unfolds when the
dimension decreases, see Figs. (2.6, 9.4)
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vacuum: The vacuum has a volume, a density and
the velocity c. (C. 1 or Carmesin (2021d))

vacuum expectation value, VEV: see table (11.5)
and C. (8)

weak angle ΘW : The weak angle characterizes the
structure of the charges of the electroweak interac-
tion in the two-dimensional charge space, see Figs.
(6.1, 6.2). The value has been derived from the
SQ, see Fig. (5.2).
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W., and Witte, L. (2022). Universum Physik Sekundarstufe
II Gesamtband Qualifikationsphase. Cornelsen Verlag, Berlin.
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