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How are relativity, gravity and quantum physics unified?
Our solution is geometrical: the dynamics of volume.
Our solution fulfills the following criteria:
We completely use elements of reality.
Our solution is derived exactly from physical principles.
We use no hypothesis or fit.
We achieve precise accordance with observation.
We provide precise predictions.
Relativity including gravity implies the dynamics of volume. The dynamics
of volume provides the

- transmission of gravitational interaction
- curvature of spacetime
- expansion of space
- solution of the flatness problem
- mapping to Ricci flow
- Schrödinger equation
- correct postulates of quantum physics
- universality of quantization
- second quantization by elements of reality
- exact dynamics and explanation of nonlocality
- full causality in spacetime
- explanation of Einstein′s principle of locality
- exact explanation of quantum paradoxes
- explanation of a measurement process by elements of reality
- dynamics of the measurement process
- explanation of zero-point energy by elements of reality
- formation of matter by phase transitions
- observed density of dark energy
- explanation of dark energy by elements of reality
- observed Hubble - tension
- observable value of H0 as a function of the redshift (front cover)
- era of ′cosmic inflation′

- evolution of dark energy during ′cosmic inflation′

- dynamics and explanation of fundamental interactions
- interpretation of quanta by dynamics of volume
- cosmological parameters
- derivation of quantum gravity by elements of reality

In this book we derive all findings in a systematic, clear and smooth manner.
We summarize our results by many definitions, propositions and theorems.
We are classes from grade 10 or higher, courses, research clubs, enthusiasts,
observers, experimentalists, mathematicians, natural scientists, researchers
etc.
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Chapter 1

Introduction

We humans improve our understanding of nature. In partic-
ular, we describe space so that we can navigate and organize
telecommunication, Hoskin (1997).

For instance, Maxwell (1865) developed a very successful the-
ory including electromagnetic waves. For it, he proposed an
aether in which these waves propagate.

However, Einstein (1905) realized that a propagation of elec-
tromagnetic waves is better described in spacetime. Hereby,
Einstein (1915) proposed a very successful theory describing
curvature and expansion of spacetime since the Big Bang.

Moreover, de Broglie (1925) and Schrödinger (1926b) postu-
lated a very successful theory for the propagation of abstract
wave functions describing matter and physical objects in gen-
eral: a theory of quantum physics. However, Einstein et al.
(1935) realized that quantum physics is nonlocal, see also Bell
(1964), Aspect et al. (1982), Hensen et al. (2015),Rosenfeld
et al. (2017), Handsteiner et al. (2017). Thereby, Einstein
(1948) proposed his principle of locality: No unmediated
effect should be faster than the velocity of light c.

Furthermore, Perlmutter et al. (1998), Riess et al. (2000),
Smoot (2007) discovered that space has an energy density, the
dark energy. However, very different concepts of ’vacuum’
have been proposed in the very successful theory of elemen-
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2 CHAPTER 1. INTRODUCTION

tary particles: For instance, an ’electromagnetic vacuum’, see
Zeldovich (1968), Cugnon (2012), and a ’vacuum expectation
value’, see (Pich, 2007, section 4.2), (Zyla et al., 2020, section
11.2), have been introduced.

Additionally, the Hubble constant describing the rate of ex-
pansion of spacetime since the Big Bang exhibits an observed
Hubble tension, see e. g. Riess et al. (2022).

In addition, Guth (1981) proposed a very rapid increase of
space in an early era of ’cosmic inflation’.

Altogether, in present-day physics, we find various very suc-
cessful theories that provide quite different answers about the
nature of space. However, we live in one world. So there should
be a unified theory. Indeed, a unified theory has always been
preferred, see e. g. Styrman (2019). For it, we derive a geomet-
rical and exact theory of the dynamics of volume in na-
ture, including the formation of volume. We derive that theory
from fundamental principles of physics, Fig (12.3). We do not
propose any hypothesis or execute any fit. Hereby, we achieve
precise accordance with observation, within the inaccuracy of
measurement. Using that dynamics of volume, we achieve de-
tailed answers to the following questions in a unified manner:

How are the proposed curvature and expansion of space derived
and explained? How are the postulates of quantum physics de-
rived? How is the space explained, in which electromagnetic
waves propagate? What is a wave function? How is the propa-
gation of nonlocal wave functions explained? How is nonlocality
derived and explained on the basis of the dynamics of the vol-
ume? How is the observed dark energy explained and derived?
How is the observed Hubble tension explained and derived, see
the front cover and Fig. (21.3)? How is the ’cosmic inflation’
derived and explained? How do the dynamics of the volume
resolve the paradoxes of quantum physics?

How can you find the theory? For it, see section (2.1).



Part I

Semiclassical Spacetime and
Gravity
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Chapter 2

Basic Principles

2.1 How can you find the theory?

Most systematically, you start with chapter (2), in order to
comprehend the whole theory, see Fig. (12.3).

The key to the unification is the volume and its dynamics.
For it, the reality (DEF 15) of the additional volume is derived
in section (2.6) and chapter (7). Thereby, the basics of the
dynamics of the volume in chapter (7) can be derived with help
of the Schwarzschild (1916) metric, SM, or with help of the
Einstein (1915) field equation, EFE, or with help of the Ricci
flow, Hamilton (1982), see mapping theorem in chapter (17).

Though the basics of the dynamics of the volume can be derived
with help of general relativity (via the SM or EFE or Ricci
flow), the dynamics of the volume provide results far beyond the
present-day theory of general relativity, Hobson et al. (2006),
Straumann (2013), Bartelmann (2019): For instance, quantum
theory and the energy density of dark energy are derived and
explained.

Moreover, our result is far beyond the usual theories of quantum
gravity, Kiefer (2003), Kiefer and Sandhöfer (2008), (Schulz,
2020, chapter 2): Usual theories of quantum gravity use quan-
tum physics, a hypothetical quantization procedure and rela-
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6 CHAPTER 2. BASIC PRINCIPLES

tivity and gravity. In contrast, we derive and explain quantum
physics on the basis of general relativity and gravity. Of course,
as a consequence, our theory includes quantum gravity, with-
out using any quantization procedure, or any hypothesis at all.
Next, we summarize the used fundamental principles of physics.

2.2 Equivalence principle, EP

In this section, we summarize the experimentally confirmed
Einstein equivalence principle, see e. g. Einstein (1915), Will
(2014), Carmesin (2022d):

Definition 1 Einstein equivalence principle

The Einstein equivalence principle, EEP, includes the following
statements:

(1) The weak equivalence principle, WEP, states that the gravi-
tational force FG is proportional to the mass m, or ~FG = m · ~G∗,
see e. g. (Will, 2014, section 2.1). According to the action prin-
ciple, ~F = m · ~a, we derive the following statement: A probe
mass m that is freely falling in a gravitational field ~G∗ has an
acceleration ~a equal to that field:

~G∗ = ~a (2.1)

(2) The outcome of any local non-gravitational experiment is
independent of the velocity of the freely falling reference frame
in which it is performed.

(3) The outcome of any local non-gravitational experiment is
independent of where and when in the universe it is performed.

(4) Lorentz invariance is included, see e. g. (Will, 2014, section
2.1), so SR is included (see section 2.3).
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2.3 Special relativity, SR

In this section, we summarize essential results of special relativ-
ity, SR, see e. g. Einstein (1905), Landau and Lifschitz (1971),
Moore (2013), Newell et al. (2018), Carmesin (1996), Carmesin
(2020b):

external observer

A B C

object

Lown
v

x

Figure 2.1: The length L of the object is measured with help
of the light-travel distance dLT . For it, a light signal is used
that travels from B to C and back to C. The time dtown of
propagation of that signal in the own frame provides the own
length dLown = c · dtown/2. The time dtext of propagation of
that signal in the external frame provides the external length
dLext = c · dtext/2. In order to measure the light-travel time
from B to C and back to B, the external observer can measure
the light-travel time from A to C and back to A and subtract
the light-travel time from A to B and back to A.

Corollary 1 Special relativity

In each inertial frame, the following holds:

(1) The velocity of light or electromagnetic waves has the same
value, Maxwell (1865), Zyla et al. (2020), Carmesin (2006):

c = 299 792 458
m

s
(2.2)

(2) If an object moves at a velocity v < c relative to an external
inertial frame, and if a time town elapses between two events in
the own frame of the object, then the time text or trel elapses be-
tween these two events in the external inertial frame as follows,
see e. g. (Landau and Lifschitz, 1971, Eq. 3.1):
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text = trel = γ · town
with the Lorentz factor γ =

1√
1− v2/c2

(2.3)

That relation is called time dilation, see e. g. (Einstein, 1905,
§ 2) or (Hobson et al., 2006, section 1.7).

(3) If an object moves at a velocity v = |~v| relative to an inertial
frame, and if the object has a mass mown in its own frame, then
the object exhibits the own energy Eown in its own frame as
follows, see e. g. (Landau and Lifschitz, 1971, Eq. 9.5):

Eown = mown · c2 (2.4)

Moreover, the object exhibits the relativistic energy Erel or Eext

in the external inertial frame as follows, see e. g. (Landau and
Lifschitz, 1971, Eq. 9.4):

Erel = γ · Eown (2.5)

(4) If an object moves at a velocity v relative to an external
inertial frame, and if the object has a mass mown in its own
frame, then the object exhibits the relativistic momentum pext
and the energy Eext in the external inertial frame as follows,
see e. g. (Landau and Lifschitz, 1971, Eqs. 9.1, 9.6, 9.7):

pext = mown · v · γ = mown ·
v√

1− v2/c2
(2.6)

Eext =
√
m2
ownc

4 + p2
extc

2 (2.7)

(5) If an object moves at a velocity v < c relative to an external
inertial frame, and if the object has a length Lown in the own
frame, and if that length is measured with help of the light-
travel distance in the external frame, then the following results
are obtained, see e. g. see e. g. Einstein (1905); Landau and
Lifschitz (1971) or Fig. (2.1):
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In the own frame, the following time dtown elapses during the
propagation of the light from B to C and back to B, see e. g.
Condon and Mathews (2018):

dtown =
2

c
· Lown (2.8)

In the external frame, the following time dtext elapses during
the propagation of the light from B to C and back to B, see e.
g. (Einstein, 1905, § 2):

dtext, B to C =
Lext
c− v

, external time from B to C (2.9)

dtext, C to B =
Lext
c+ v

, external time from C to B(2.10)

dtext = dtext, B to C + dtext, C to B or (2.11)

dtext =
Lext
c− v

+
Lext
c+ v

=
2

c

Lext√
1− v2

c2

2 or (2.12)

dtext

√
1− v2

c2
=

2

c

Lext√
1− v2

c2

(2.13)

Time dilation (Eq. 2.3) is involved in the measurement of

the light-travel distance. Accordingly dtext

√
1− c2

v2 = dtown and

dtown = 2
c · Lown are used:

dtown =
2

c

Lext√
1− v2

c2

=
2

c
· Lown or (2.14)

Lext = Lown ·
√

1− v2

c2
(2.15)

That relation is called length contraction, see e. g. (Einstein,
1905, § 2) or (Hobson et al., 2006, section 1.7).

(5) As the length contraction can be derived from time dilation,
space and time form a combined system, spacetime. In order
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c · dt

Figure 2.2: A lamp (black) emitted a light flash (dotted). During
a time dt, the flash reached the radius c · dt. Its square is equal
to dx2 + dy2 + dz2 = c2 · dt2.

to describe that system in a coherent manner, Einstein (1905)
used the concept of a light flash, see Fig. (2.2). If a lamp emits
a light flash, then its radius reaches the radius c · dt during a
time dt. Thus, the positions of the flash as a function of the
time dt are described by the following relation:

ds2 = −c2 · dt2 + dx2 + dy2 + dz2 = 0 (2.16)

Thereby, ds is called line element, see e. g. (Hobson et al.,
2006, section 1.9). That equation holds for each system or
frame that moves at a constant velocity v relative to the lamp.
If the lamp moves at a constant velocity v relative to a rest
frame in the direction of the x-axis, then the line element in the
rest frame includes the time dilation and length contraction as
a function of the Lorentz factor γ(v) follows:

ds2 = −c2 · dt2/γ2 + dx2 · γ2 + dy2 + dz2 = 0 (2.17)

This line element describes a metric, called Minkowski metric.

Corollary 2 Properties of special relativity

(1a) The invariance of the velocity of light has been observed.
For instance, light emitted by binary stars at different velocities
has been observed, see e. g. de Sitter (1913), Carmesin (2006),
Carmesin (2022d).
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Figure 2.3: An observer in an external frame can measure the
length Lown of the stone with a yardstick. For it, the observer
moves the yardstick to the stone and into the frame of the stone.
Then the length Lown ≈ 177 mm can be measured.

(1b) The invariance of the velocity of light can be obtained
with help of a thought experiment, additionally, see (Carmesin,
2022d, section 7.8).

(2) Time dilation has been observed. For instance, atomic clocks
at satellites have been compared with atomic clocks at Earth
Ashby (2002).

(3) Relativistic energy has been observed. According to (Ein-
stein, 1907, title), relativistic energy represents inertia. That
inertia has been observed, see e. g. Kaufmann (1901, 1906);
Bucherer (1908).

(4) The equivalence of mass and energy has been observed. For
instance, the positron has been observed, Anderson (1933), and
the annihilation of the positron and the electron has been ob-
served, see e. g. Zyla et al. (2020); Workman et al. (2022).

(5a) If a length parallel to the velocity ~v of a moving object is
measured with the light-travel distance dLT , then the time dila-
tion is involved, and then the length contraction can be observed,
see corollary (1) and (Einstein, 1905, § 2).

(5b) Accordingly, three-dimensional space and one-dimensional
time are combined to a four-dimensional spacetime Einstein
(1905); Landau and Lifschitz (1971).
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(5c) In particular, there is no length contraction orthogonal to
the velocity ~v.

(5d) Einstein (1911b) explained the possible reality of the length
of an object with two examples: If an object has its own length
Lown, and if an external observer moves his yardstick into the
objects frame, then the observer measures the own length Lown
of the object, without length contraction. The reason is that the
measurement takes place in the own frame of the object. This
is illustrated in Fig. (2.1).

However, an external observer not moving with the object of an
own length Lown can in principle measure the length contrac-
tion. Here, we elaborated such a measurement, see Fig. (2.1)
or corollary (1).

(6) For instance, Laue (1912) as well as Debs and Redhead
(1996) propose solutions of the twin paradox. Here we discuss a
version of that paradox, whereby the time dilation can be mea-
sured with help of a usual satellite and spacecraft, see e. g.
Ashby (2002):

One twin travels in a satellite at a constant velocity v at a cir-
cular Earth orbit with a radius R, whereby the orbit passes a
point above the north pole. The other twin is at a spacecraft
at the same radius R and constantly above the north pole (Fig.
2.4).

Geometrically, each twin can say that he is at rest and that
the other moves on a circular orbit - that is the essence of the
paradox. However, physically, the orbits are not equivalent:

Both twins are in the same gravitational field. An acceleration-
sensor of the twin in the satellite shows the result zero, as a
consequence of his circular motion at the velocity v. Thus, dur-
ing one orbit, his age increases by the own periodic time Town.
In contrast, an acceleration-sensor of the twin at the spacecraft
shows 9.81m/s2, as he does not move at a circular orbit. So,
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his age increases by the external time Text = Town√
1−v2/c2

.

Note that a paradox is an apparent cognitive conflict, the solu-
tion of which provides a deeper insight.

(7a) Most physical systems consist of parts that move relative
to each other, similarly as the external observer and the mov-
ing object discussed in SR. Such composed physical systems are
described by SR. For instance, an atomic clock is a composed
system, as an atom consists of the nucleus and at least one
electron. Accordingly, SR holds for composed systems in a uni-
versal manner.

(7b) If the parts of a composed system move at velocities smaller
than c, then the addition of velocities in SR can be applied, see
e. g. Einstein (1905); Landau and Lifschitz (1971); Carmesin
(1996); Moore (2013).

(8) Einstein argued ((Einstein, 1907, p. 381)), that a propa-
gation of a signal faster than light is not compatible with spe-
cial relativity. We use this result for the case of natural three-
dimensional volume. More general physical systems have been
derived with help of phase transitions, see e. g. Carmesin
(2021b, 2019b, 2017, 2018b).

2.4 Radial structure of gravity near a mass

In this section, we introduce the first basic principle of gravity.
For it, we introduce the principle of gravity in the surround-
ings of a mass M . On that basis, we will derive more general
situations including gravity later.

2.4.1 Radial structure near a mass M

In the vicinity of a mass M , according to symmetry, the follow-
ing holds: If a hand lead is in a frame that does not rotate and
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Earth

v

R

Figure 2.4: Twin paradox: One twin travels in the satellite at a
velocity v, the other twin waits in the spacecraft at a constant
position above the north pole.

that is at a constant distance to M , then the hand lead points
towards M , see Fig. (2.5).

Using two such hand leads, a gravitational parallax distance
dGP can be measured as shown in Fig. (2.8).

2.5 Law of energy conservation

If a system is stationary, then the system is symmetric with
respect to translation in time, and then the energy of the system
is conserved, see Noether (1918). In parts I, II and III of the
present book, and in most cases in part IV of this book, we
analyze stationary systems only. Thus the basic principle of
energy conservation holds.

According to the energy time uncertainty relation, see e.
g. Heisenberg (1927); Kumar (2018); Ballentine (1998); Scheck
(2013), and corresponding to possible zero-point energies, the
basic law of energy conservation is slightly modified.

In this sense, we summarize the law of energy conservation,
see e. g. Mayer (1842), Landau and Lifschitz (1973), Tryon
(1973), Carmesin (2018b, 2019b, 2020b):
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observer with two
hand leads
D1 and D2 D1 A

S

pgrav

D2

mass M

pgravpgrav

Figure 2.5: In the isotropic surroundings of a mass M , the radial
structure of gravity can be measured by using two hand leads.
These can be arranged so that equal angles of gravitational
parallax pgrav are measured.

Corollary 3 Law of energy conservation

If a process of energy transformation or energy transport takes
place in a closed subsystem, and if that process is completely
described within a desired frame1, then the following holds:

(1) The amount of energy available for transport or transfor-
mation of energy within the chosen frame does not change.

(2) Hereby, a zero-point energy is not available for transport or
transformation of energy, as the corresponding oscillation, the
zero-point oscillation, is already at its lowest energy state2.

1The frame is not changed during the analysis of the process, of course.
2If the size of a system changes, then the number of ZPOs of that system can change,

see e. g. (Ballentine, 1998, section 19.3), (Sakurai and Napolitano, 1994, p. 476-480).
The ZPE of a ZPO is not available, see e. g. Mehra and Rechenberg (1999), Fornasini
and Grisenti (2015), Lamb and Retherford (1947), (Landau and Lifschitz, 1965, § 3),
(Kumar, 2018, p. 65), (Ballentine, 1998, section 19.3), (Sakurai and Napolitano, 1994, p.
476-480), (Scheck, 2013, p. 25).
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(3) The law of energy conservation may exhibit a standard de-
viation according to the energy time uncertainty relation, see e.
g. Heisenberg (1927); Kumar (2018); Ballentine (1998); Scheck
(2013).

2.6 Measures of observable distance

If a physical quantity can be measured, then it is part of phys-
ical reality, see definition (15). A distance measure is an es-
sential basis for a metric space, see e. g. (Hilbert, 1903, § 5),
(Lee, 1997, p. 91). For instance, we travel and communicate in
the space described by the light-travel distance dLT .

In this section, we provide that basis by introducing proce-
dures for the measurement of a distance between an observer
and an object, see e. g. Fig. (2.6). Each such procedure of
measurement provides a measure of observable distance.

2.6.1 Insights from measures of observable distance

In general, there are various methods for the measurement of a
physical quantity. For instance, if you want to measure a mass
at Earth, then you can use a beam balance or a spring balance.
However, you may obtain wrong values at the Moon, as the
beam balance really measures mass, whereas the spring balance
basically measures force. The difference of both measures can
provide insights about the relation of mass and force.

Similarly, the difference of two measures of observable dis-
tance can provide insights about the dynamics of volume.

2.6.2 Light-travel distance

In this section, we describe how an observer can apply an op-
tical source, in order to measure the light-travel distance,
dLT (A,B) between two locations A and B, see Fig. (2.6).
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observer at A
with

optical
source

dLT (A,B)

signal

object at B

Figure 2.6: Measurement of the time of flight tof and of the corre-
sponding light-travel distance dLT between an observer and an
object, Condon and Mathews (2018).

Definition 2 Light-travel distance

The light-travel distance between locations A and B is defined
by the following procedure:

(1) The observer at A emits a signal of his optical source to-
wards the object, whereby the observer starts a clock.

(2) The object at B reflects the signal.

(3) The observer detects the reflected signal, whereby the ob-
server stops the clock.

(4) The time interval between emission and detection of the
signal is called time of flight, tof .

(5) The light-travel distance is as follows:

dLT (A,B) =
tof · c

2
(2.18)

with time of flight tof and velocity of light c (2.19)

2.6.3 Optical parallax distance

Even very large distances must be measured by local devices.
For it, the concept of the parallax is appropriate. In this sec-
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tion, we describe how an observer can apply two local optical
detectors, in order to measure even a large distance. The cor-
responding distance is called optical parallax distance, dOP ,
see Fig. (2.7).

observer with two
optical detectors D1 and D2

D1 A

S

popt

D2

b
2

b
2

object with optical source
at point S

poptpopt

ray to D2ray to D1

dOP

Figure 2.7: Measurement of the optical angle of parallax popt and
of the corresponding optical parallax distance dOP between an
observer and an object. Hereby, D1, D2 and S form an isosceles
triangle D1D2S, with the baseline D1D2, having the center A.

Definition 3 Optical parallax distance

The optical parallax distance between an observer and an object
is defined by the following procedure, for an illustration see Fig.
(2.7):

(1) The object emits optical rays.

(2) The observer detects a ray propagating from the object to
his first detector D1 and a ray propagating from the object to
his second detector D2. Hereby, the distance between these de-
tectors is named b. Moreover, the detectors are placed so that
these detectors D1 and D2 and the object are the corners of an
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isosceles triangle. For it, the detectors are placed so that the
observer measures the same optical angle of parallax popt at
both detectors.

(3) The observer calculates the optical parallax distance
dpar,opt according to the following equations:

triangle SD2A, is rectangular with tan(popt) =
b/2

dOP
(2.20)

thus, dOP =
b/2

tan(popt)
(2.21)

with optical parallax popt (2.22)

In cosmology, the optical parallax distance is generalized to the
angular diameter distance, Condon and Mathews (2018).

observer with two
hand leads at

D1 and D2

at ~ω = 0 and
constant pgrav

D1 A

S

pgrav

D2

b
2

b
2

mass M

pgravpgrav dGP

Figure 2.8: Measurement of the angle of gravitational parallax
pgrav and of the corresponding gravitational parallax distance
dGP between an observer and an object. Hereby, D1, D2 and
S form an isosceles triangle D1D2S, with the baseline D1D2,
having the center A.
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2.6.4 Gravitational parallax distance

In this section, we describe how an observer can apply two hand
leads, in order to measure the distance of an object. The corre-
sponding distance is called gravitational parallax distance,
dGP , see Fig. (2.8).

Definition 4 Gravitational parallax distance

The gravitational parallax distance between an observer and an
object is defined by the following procedure, for an illustration
see Fig. (2.8):

(1) The observer places two hand leads D1 and D2 at a distance
b. Hereby, the hand leads are placed so that D1 and D2 and the
object are the corners of an isosceles triangle. For it, the hand
leads are placed so that the observer measures the same angle
of gravitational parallax pgrav at both detectors. The center
of the baseline D1D2 is named A. Hereby, the observer has zero
rotational velocity, ~ω = 0, and a constant gravitational angle of
parallax.

(2a) Thereby, the observer places his laboratory in such a man-
ner that two conditions are obeyed.

(2b) The gravitational parallax distance dGP does not change as
a function of time. For it, the observer can use a closed loop
control.

(2c) The angular velocity is zero. For it, the observer can use
a gyroscope and a closed loop control.

dGP = constant and (ω1, ω2, ω3) = (0, 0, 0) (2.23)

(2d) Thus, the observer has constant polar coordinates R = dGP
and θ and φ relative to the mass M .

(2e) Thence, the observer has a fixed position relative to the
mass M .
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(3) The observer calculates the gravitational parallax dis-
tance dGP according to the following equations:

triangle SD2A, is rectangular (2.24)

with tan(pgrav) =
b/2

dGP
(2.25)

thus, dGP =
b/2

tan(pgrav)
(2.26)

with gravitational parallax pgrav (2.27)

(4) A frame with the properties in (1) and (2a-e) is named dGP
frame.

M R

Figure 2.9: If a spacecraft is in a circular orbit around a mass
M and in the isotropic vicinity of M , and if the spacecraft
measures the circumference U of the orbit, the circumferential
radial coordinate is Rcircumferential = U

2π .

2.6.4.1 Circumferential radial coordinate

A circumference C of a circle with the mass M at its center
and the corresponding circumferential radial coordinate (Moore,
2013, Eq. 9.5)

R =
C

2π
= Rcircumferential (2.28)
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can be measured as follows. A spacecraft can travel in an orbit
around M , whereby the distance to the mass M is constant in
the isotropic vicinity ofM . The circumference C of the orbit can
be measured as follows. A large number N of such spacecrafts
travel at the same orbit at the same speed and in an equidistant
manner. Two neighboring spacecrafts measure the distance d
from each other. That distance is not influenced by gravity, as
the straight line between the two spacecrafts is horizontal. The
circumference is the product of N and d:

C = N · d (2.29)

The circumferential radial coordinate is a part of physical re-
ality, as it can be measured, Einstein et al. (1935). Moreover,
that coordinate is a distance between M and the spacecraft.
In general, the circumferential distance R is different from the
light-travel distance dLT between M and the spacecraft. The
circumferential radial coordinate R and the gravitational paral-
lax distance between the spacecraft and the mass M are equal,
as both measure the distance in the limit M to zero:

dGP, M to observer = Rcircumferential = lim
M→0

dLT, M to observer (2.30)

2.6.4.2 Measurable map of non-curved space

In this section, we show how the gravitational parallax distance
dGP provides a measurable map of non-curved or flat space.

(1) We show the following: For each object in the vicinity of
M , the gravitational parallax distances dGP to M are equal to
the distance of the non-curved or flat space.

The dGP -distance is measured by the triangle in Fig. (2.8).
That triangle has the sum of interior angles equal to π. It is
shown next:

The angle ∠D1AS is equal to π/2, as the observer provides an
isosceles triangle.
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∠SD1A is smaller than π/2 by a difference pgrav. So, ∠SD1A
is equal to π/2− pgrav.
As gravity has radial symmetry (section 2.4), two sides of the
triangle intersect at M or S. So, ∠ASD1 is equal to pgrav.

Thus, the sum of the above three interior angles is π.

As the used triangle in Fig. (2.8) has the sum of interior angles
equal to π, it is in accordance with non-curved space, see e. g.
(Lee, 1997, Angle-Sum Theorem, p. 166).

As the used triangle in Fig. (2.8) is in accordance with non-
curved space, it provides the distance of the non-curved space.

(2) We show that for each object, the polar coordinates of the
non-curved space are provided.

The radial coordinate is provided according to item (1).

The angular coordinates can be measured similarly as the angles
of parallax in Fig. (2.8).

(3) As the polar coordinates of the non-curved space are pro-
vided for each object, a measurable map of non-curved or flat
space is provided. For an illustration see Fig. (2.10).

We summarize our finding, see illustrations in Figs. (2.11, 2.10).

Theorem 1 dGP provides flat measured space

(1) The procedure of measurement of the gravitational parallax
distance dGP in DEF (4) provides a distinction between gravity
and acceleration.

(2) In the surroundings of a mass M , the gravitational parallax
distance dGP can be measured without ambiguity.

(3) Based on that measured distance dGP , the corresponding
measured space is not curved, but flat. Accordingly, a gravita-
tional parallax distance dGP is equal to the corresponding light-
travel distance dLT,M→0 in the limit M to zero. Hereby and in
general, two distances between two events A and B that take
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dLT,M→0 based space

dLT based space

M

Figure 2.10: Two maps: In this illustration, three-dimensional
space is represented by a two-dimensional manifold, similarly
as in (Stephani, 1980, Fig. 10.1) or (Hobson et al., 2006, Fig.
11.7 or Fig. 11.10 upper panel or Fig. 13.1), whereby a mass M
is at the origin. The light-travel distance dLT is a measurable
physical distance. With it, the dLT based map is formed. That
map is curved, see e. g. (Stephani, 1980, Fig. 10.1). The
gravitational parallax distance dGP = dLT,M→0 is a measurable
physical distance. With it, the dGP based map is formed. That
map is not curved. As most measurements are based on light,
the dLT based map is the mostly used map. Moreover, the dGP
based map can be regarded as the limit of M to zero of the
dLT based map. Note: You can use a map instead of a globe
of Earth, without thinking Earth would be flat. Similarly, we
travel or use telecommunication in the curved space described
by the upper map.

place at the same time are named corresponding distances.

dGP (A,B) = lim
M→0

dLT (A,B) =: dLT,M→0(A,B) (2.31)

(4) The measured distance dGP and the corresponding measured
space are part of physical reality, according to DEF (15).

(5) In contrast, in general, the space that is based on the light-
travel distance dLT is curved. That space is usually considered
as the physical space, as distances in space are usually measured
on the basis of light.
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observer

RSR

L
dLT event horizon

dGP

M

Figure 2.11: Two observations provide physical reality: Observa-
tion using light provides the light based space structure ending
at the event horizon, see e. g. (Stephani, 1980, Fig. 10.1).
Observation using gravity provides the gravity based spatial
structure.

2.6.5 Two space structures

In this section, we summarize the two space structures, for an
illustration see Figs. (2.11, 2.10).

Corollary 4 Two physical spatial structures

Physical reality provides two space structures as follows:

(1) Physical reality provides a gravity based spatial structure by
the following polar coordinates3:

(dGP , θ, φ) = gravity based space structure (2.32)

(2) Physical reality provides a light based space structure by the
following coordinates4:

(dGP ·
√
gRR(R), θ, φ) = light based space structure, (2.33)

with an elongation factor
√
gRR(R), (2.34)

whereby gRR(R) is a function of R (2.35)

3For polar coordinates in three dimensional flat space, see e. g. (Hobson et al., 2006,
p. 35).

4This space structure represents the spatial part of the Schwarzschild metric, see e. g.
Schwarzschild (1916), (Landau and Lifschitz, 1971, Eq. 97.14) (Hobson et al., 2006, Eq.
9.12).
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(3) The gravity based spatial structure represents a flat space,
whereas the light based space structure represents a curved space,
that is part of a curved spacetime.

(4) The light based space structure is the usual space structure,
as most measurements are obtained with help of light, electro-
magnetic radiation or particles. Within natural space, all such
objects propagate through the light based space structure at a
velocity v ≤ c.

2.7 Objects of interaction

In this section, we summarize the physics of objects of interac-
tion. Such objects of interaction are used in the three funda-
mental interactions, electromagnetic interaction, weak interac-
tion and strong interaction, see e. g. Zyla et al. (2020), Griffiths
(2008). Hereby, the corresponding objects of interaction are the
(virtual) photons, the Z - andW - bosons and the gluons. These
objects of interaction propagate in space.

In the case of gravity, the dGP distance provides a non-curved
map. We can use that map in order to describe the objects of
interaction of gravity. We will investigate the propagation of
the objects of interaction in part (II). Next, we summarize the
properties of objects of interaction described in a non-curved
space.

2.7.1 Properties of objects of interaction

In this section, we summarize the properties of objects of inter-
action described in a non-curved space. For it, we analyze the
principle of the transfer of a fundamental interaction as follows,
see Fig. (2.12):

A fundamental interaction or force is transferred by objects of
interaction, so that the following holds, e. g. Zyla et al. (2020).

As a principle, a source Q of the interaction emits an amount
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∆q of objects of interaction per time ∆t proportional to Q. So
the corresponding current Iq is as follows:

∆q

∆t
= Iq ∝ Q (2.36)

As a consequence, in an isotropic region around Q, the current
Iq flows in an isotropic manner. Thus, at a distance R from Q,
the corresponding current density jq is as follows:

jq =
Iq

4πR2
∝ Q

R2
(2.37)

As another part of the principle, a probing particle with a source
Qprobe has a cross section AQprobe ∝ Qprobe, so that the amount
∆qtransferred of objects of interaction transferred to Qprobe per

time
∆qtransferred

∆t is proportional to jq · AQprobe:

∆qtransferred
∆t

∝ jq · AQprobe ∝ jq ·Qprobe (2.38)

Here, we insert the relation for the current density in Eq. (2.37):

∆qtransferred
∆t

∝ Q ·Qprobe

R2
(2.39)

As a part of the principle, an amount ∆qtransferred causes a
momentum transfer ∆ptransferred proportional to ∆qtransferred:

∆qtransferred ∝ ∆ptransferred, (2.40)

According to Newton’s action principle (second axiom, New-
ton (1687)), the probing particle Qprobe experiences a force Fq,
which is equal to the momentum transferred per time:

|Fq| =
∆ptransferred

∆t
(2.41)

Here, we use the relations for the transferred objects of inter-
action in Eqs. (2.40, 2.39):

|Fq| =
∆ptransferred

∆t
∝ ∆qtransferred

∆t
∝ Q ·Qprobe

R2
(2.42)

We summarize in the form of a definition:
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Definition 5 Principle of transfer of interaction

A fundamental force is transferred by objects of interaction.
Thereby, without screening, the following holds in three - di-
mensional space, see e. g. Zyla et al. (2020).

(1) A source Q emits an amount ∆q of objects of interaction
per time ∆t proportional to Q. So, the corresponding current
is as follows:

∆q

∆t
= Iq ∝ Q (2.43)

(2) An amount ∆qtransferred of objects of interaction transferred
to a probing particle Qprobe causes a momentum transfer, named
∆ptransferred, that is proportional to ∆qtransferred:

∆qtransferred ∝ ∆ptransferred, (2.44)

(3) If a probing particle has a source Qprobe, and if it is at a
distance R from Q, and if it has a cross section AQprobe, then
the amount ∆qtransferred of objects of interaction transferred to

Qprobe per time ∆t is as follows: The ratio
∆qtransferred

∆t is pro-
portional to the product jq ·AQprobe of the current density, the
current Iq per area A; jq = Iq/A and the cross section AQprobe:

∆qtransferred
∆t

∝ jq · AQprobe ∝ jq ·Qprobe ∝
Q ·Qprobe

R2
(2.45)

(4) A corresponding force |~Fq| is as follows:

|~Fq| =
∆ptransferred

∆t
∝ Q ·Qprobe

R2
(2.46)

2.8 Gravity near a mass, GG

In this section, we introduce the second basic principle of grav-
ity. For it, we use the gravitational parallax distance dGP and
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M

G∗ field line

Figure 2.12: Mass M with field lines (dotted) and vectors (solid)
of the gravitational field G∗. The gravitational field is propor-
tional to a corresponding outwards flowing current density jp,
see definition (5).

the objects of interaction. As a consequence, there will be a
1/R2 law. Accordingly, we name that gravity generalized Gaus-
sian gravity, GG, as Gaussian gravity exhibits the same law.
The present gravity is more general, as it provides curvature of
space, in addition, see e. g. Carmesin (2021d).

For it, we apply the definition (5) to the case of gravity.
Hereby, the source Q is the considered mass M , the probing
particle Qprobe is a probe mass mprobe, and the distance R is the
gravitational parallax distance dGP . Thus, the gravitational
force is as follows5

|FG| ∝
M ·mprobe

d2
GP

(2.47)

Hereby, the proportionality factor is the universal constant of
gravitation (Zyla et al., 2020, table 1.1):

G = 6.674 30(15) · 10−11 m3

kg · s2
(2.48)

5Note that the proportionality in Eq. (2.47) is in accordance with the analysis of
gravity by Gauss (1840).
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Thus, the corresponding force is as follows:

~FG =
G ·M ·mprobe

d2
GP

· ~edownwards unit vector (2.49)

By definition, the gravitational force divided by the probe mass
is the gravitational field:

~G∗ =
~FG

mprobe
(2.50)

As a consequence, the gravitational field is as follows:

~G∗ =
G ·M
R2

· ~edownwards unit vector with R = dGP (2.51)

We summarize our results:

Theorem 2 Law of inverse squared distance

For a fundamental force that is transferred by objects of inter-
action according to definition (5), the following holds:

(1) If a source Q and a probing object Qprobe are at a distance
R = dGP , and if no screening takes place, then the force of inter-
action |Fq| between Q and Qprobe is proportional to the inverse
squared distance as follows:

|Fq| ∝
Q ·Qprobe

R2
(2.52)

(2) In particular, if a mass M and a probe mass mprobe are at
a distance R = dGP , then the gravitational force of interaction
~FG between M and mprobe is as follows:

~FG =
G ·M ·mprobe

R2
· ~edownwards unit vector (2.53)

(3) Thus, the corresponding gravitational field is as follows:

~G∗ =
G ·M
R2

· ~edownwards unit vector (2.54)
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R = dGP
fixed

dτ1→2

dτ2→3

M

Figure 2.13: Two dimensional scheme of an observer localized at
a constant gravitational parallax distance R = dGP and at zero
angular velocity ~ω = ~0. He measures the height h(τ) of a falling
ball as a function of time τ and evaluates the gravitational ac-
celeration a = h′′(τ).

2.8.1 Consequence: measurement of a mass M

In this section, we describe how an observer can measure a
distant mass or dynamic mass M .

Definition 6 Measurement of a distant mass M

An observer can measure the mass or dynamic mass M of a
distant object by the following procedure, for an illustration see
Fig. (2.13):

(1) The observer measures the gravitational parallax distance
dGP , see definition (4).

(2) The observer places his laboratory in such a manner that
two conditions are obeyed:

(2a) The gravitational parallax distance dGP does not change as
a function of time.
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(2b) The angular velocity is zero. For it, the observer can use
a gyroscope.

dGP = constant and (ω1, ω2, ω3) = (0, 0, 0) (2.55)

(2c) Thus, the observer has constant polar coordinates R = dGP
and θ and φ relative to the mass M .

(2d) Thence, the observer has a fixed position relative to the
mass M .

(3) The observer measures the acceleration a of a ball that is
freely falling in his laboratory. For it, the observer can apply
the following steps:

(3a) The observer starts the falling of a ball.

(3b) The observer measures the height h(τ) of the ball as a func-
tion of time τ .

(3c) The observer evaluates the second derivative of the mea-
sured function h(τ) and identifies it with the acceleration a:∣∣∣∣∂2h

∂τ 2

∣∣∣∣ = |a| (2.56)

~a = |a| · ~edownwards unit vector (2.57)

(4) The observer determines the gravitational field ~G∗ by us-
ing the principle of equivalence of the acceleration ~a and the
gravitational field ~G∗:

~G∗ = ~a (2.58)

(5) The observer applies the term for the gravitational field ~G∗,
and solves it for the mass M :

|~G∗| = G ·M
R2

, thus (2.59)

M =
|~G∗| ·R2

G
, with R = dGP We summarize : (2.60)
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Corollary 5 Observer at an isotropic vicinity of M

An observer in an isotropic vicinity of a mass M can observe
the following physical quantities, that are part of physical reality:

(1) The observer can measure the polar coordinates (Eq. 2.32):

(dGP , θ, φ) = gravity based space structure (2.61)

(2) The observer can measure the acceleration and the gravita-
tional field (Eq. 2.58):

~G∗ = ~a (2.62)

(3) The observer can measure the mass M (Eq. 2.33):

M =
|~G∗| ·R2

G
, with R = dGP (2.63)

(4) The observer can confirm the gravitational field |G∗| as a
function of the gravitational parallax distance R = dGP (Eq.
2.59):

|~G∗(R)| = G ·M
R2

, with R = dGP (2.64)

Corollary 6 Observed effective mass Meff

If an observer searches for a mass according to DEF (6), then
the following holds:

(1) If the observer measures a nonzero angle pgrav, he/she can
interpret the result in terms of a mass M or an effective mass
Meff . In both cases, the observer can derive a distance R or an

effective distance Reff as well as a gravitational field ~G∗.

(2) If the observer measures a zero angle pgrav, he/she can in-
terpret the result as follows: There is no measurable mass M or
effective mass Meff . Accordingly, there is neither a measurable
finite distance R or Reff to a mass or effective mass, nor a

measurable nonzero gravitational field ~G∗. So the gravitational
field is zero within the accuracy of the measurement.
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2.9 Dynamic volume, DV

Idea: A possible accelerated expansion of the universe is de-
scribed by a cosmological constant Λ. It has been introduced
in a hypothetic manner by Einstein (1917).

Zeldovich (1968) suggested a density of the cosmological con-
stant ρΛ with ΩΛ = ρΛ

ρcr.
= Λc2

3H2 (Eq. VII.2). Hereby, ρcr.0 is the
present-day value of the critical density. Thereby, the global
curvature of space is zero at the critical density, C. (5), Hobson
et al. (2006). For the density ρΛ, Zeldovich (1968) proposed
a ’density of a classical vacuum’ ρΛ = ρclassical vacuum, Zeldovich ≈
2 · 10−26 kg

m3 [Eq. VII.1]. Similarly, the density ρΛ has been

named density of vacuum ρvac = Λc2

8πG , see (Hobson et al., 2006,
Eq2. 8.22, 15.1, 15.5):

ρvac = ρΛ = ρ0 − ρm,0 − ρr,0 =
3H2

0

8πG
= ρcr.0 (2.65)

Hereby, H0 is the Hubble constant, ρm,0 is the present-day value
of the density of matter, and ρr,0 is the present-day value of the
density of radiation, C. (5), Hobson et al. (2006). The densities
in Eq. (2.65) are basic constituents of the ΛCDM model of cos-
mology, Planck-Collaboration (2020), Kosowsky et al. (2002),
Zyla et al. (2020).

2.9.1 Evidence for a density ρΛ

Perlmutter Perlmutter et al. (1998), Riess et al. (2000) and
Smoot (2007) discovered the accelerated expansion of the uni-
verse.

In the framework of general relativity, that accelerated expan-
sion is explained with a nonzero value of the cosmological con-
stant Λ or of the corresponding density ρΛ or energy density
uΛ = ρΛ · c2. The corresponding energy δEΛ = uΛ · δV has been
named dark energy, Huterer and Turner (1998). We mark it by
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the subscript DE. The observed value is as follows, see e. g.
Planck-Collaboration (2020):

ρDE = uDE/c
2 ≈ 5 · 10−27 kg

m3
(2.66)

Thus, the accelerated expansion is basically described by the
cosmological constant Λ. However, within general relativity,
that constant has not been derived, so the observed value cannot
be tested or falsified Popper (1974).

Carmesin (2021d) overcame that impossibility of falsifica-
tion by deriving Λ, ρΛ and uΛ from first principles (see also
e. g. Carmesin (2018c), Carmesin (2018b), Carmesin (2019b),
Carmesin (2021b), Carmesin (2021a), Carmesin (2023a)).

2.9.2 H0 tension

Discovery of the H0 tension: Riess et al. (2022) discovered
that observed values of the Hubble constant H0 can exhibit
differences at a high level of confidence of five σ.

In the framework of the ΛCDM model of cosmology, the den-
sities ρDE, ρΛ and ρvac could be determined from the observed
value H0, according to Eq. (2.65). However, the observed val-
ues of H0 exhibit differences at the 5σ confidence level, Riess
et al. (2022). So, the following question arises: How can the
concept of dark energy be improved by principles of
physics?

2.9.3 Properties of the dynamic volume

In this section, we present a scheme of our fundamental dy-
namics of volume and its density. That dynamics of volume is
elaborated in part (II) and applied in parts (III, IV):

There is only one volume in nature, and it has only one den-
sity of volume ρvol = Ωvol · ρcr.0. Hereby, Ωvol = ρvol/ρcr.0 is
the density parameter of volume.
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(1) Volume is usually measured on the basis of the light travel
distance dLT , C. (2, 7, 17).

(2) The density of three-dimensional volume, ρvol, is determined
by the quanta of volume in C. (22, 20): Ωvol = 2/3, in precise
accordance with observation.

(3) Heterogeneity causes an additional summand in Eq. (2.65).
That summand is equivalent to a density. Accordingly, that
summand is called ρhet,equi. With it, the density ρΛ is the func-
tion fΛ(ρvol + ρhet,equi) in Eq. (25.2).

ρΛ = fΛ(ρvol + ρhet,equi) (2.67)

Thus, the dark energy has two components, the density of three-
dimensional volume and the equivalent density of heterogeneity,
in precise accordance with observation.

In earlier publications, I did not always distinguish ρvol and
ρhet,equi. Correspondingly, I often described the density ρΛ.

(4) Items (1-3) indicate that volume exhibits a dynamics, so we
call it vacuum dynamics. And we call the volume the dynamic
volume, DV.

2.10 Spacetime quadruple, SQ

The set of the four basic physical principles, special relativ-
ity, SR, equivalence principle, EP, generalized Gaussian grav-
ity, GG, and the physical reality of the dynamic volume, DV,
is named as follows: spacetime quadruple, SQ.



Chapter 3

Universal Position Factor

Idea: If a mass m0 is in the isotropic vicinity of a field gen-
erating mass M , then M causes a constant physical situation
in its vicinity. Thus, the Noether (1918) theorem implies that
the law of energy conservation can be applied. If m0 starts at
zero velocity, then it starts with the energy E = E0 = m0c

2.
If the mass is at free fall, then its velocity v increases, and its
distance R from M decreases. Thereby, v causes an increase of
the energy by the Lorentz factor γ(v). However, that factor is
compensated by a position factor εE(R), as the energy is con-
served. Thus, it should be possible to derive the position factor
from the Lorentz factor.

3.1 Position factor εE(R)

In this section, we derive the energy function E(R, v) of a probe
mass m0

1 that is at free fall towards a field generating mass M .

3.1.1 Freely falling mass m0

In this section, we derive the energy function E(R, v) of a
mass m0 that is falling in the field of a mass M , and that starts
at the radial distance dGP = R → ∞ and at the velocity v =

1Of course, an object with nonzero rest mass has velocity below c, see e. g. Moore
(2013).

37
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E

R

v

◦

◦

◦E(dR, dv)

dRderivative ∂E
∂R

dv

∂E
∂R · dR

∂E
∂v · dv

Figure 3.1: Change dE of E(R, v) ( ◦): The two slope triangles
result in the changes ∂E

∂v ·dv and ∂E
∂R ·dR. The total change dE =

E(R+ dR, v+ dv)−E(R, v) is the sum dE = ∂E
∂v · dv+ ∂E

∂R · dR.

0. Thereby, the velocity v and the radial coordinate R are
measured relative to the mass M , and the own mass or rest
mass2 are denoted by mown = m0. Solutions with more general
initial conditions are elaborated in (Carmesin (2020b)).

For it, we apply the principle of energy conservation, see
section (2.5). In particular, we apply the relativistic energy
derived in SR, see section (2.3).

E(v) = m0 · c2 · γ(v) in SR and with γ(v) =
1√

1− v2/c2

(3.1)
As m0 is falling, the velocity v increases and R decreases.

Hence, the energy would increase by the factor γ(v), according
to Eq. (3.1). Correspondingly, the energy decreases by a posi-
tion factor εE(R) = 1/γ(v), so that the energy is conserved.
Thus, we derive:

E = m0 · c2 · γ(v) · εE(R) with γ(v) = 1/εE(R) (3.2)

The functional term of εE(R) must be determined. We consider

2Note that we do not use the concept of a relativistic mass in this book.
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the change dE of the energy, which clearly depends on R and v
(Fig. 3.1). Accordingly, we derive:

dE =
∂E

∂R
dR +

∂E

∂v
dv (3.3)

From this equation, we obtain a differential equation, DEQ,
for εE(R). According to the principle of energy conservation,
dE is zero. The partial derivative regarding v is ∂E

∂v = E·γ2·v/c2,
while the partial derivative with respect to R is ∂E

∂R = E · ε′E/εE
with ε′E = ∂εE

∂R . Thus, we derive:

0 = E · ε
′
E

εE
· dR + E · γ2 · v

c2
· dv (3.4)

We divide by E and dτ , and we use v = dR
dτ as well as a = dv

dτ ,
see Fig. (2.13). We also resolve for ε′E. Thence, we obtain:

ε′E = −εE · γ
2

c2
· a (3.5)

We use γ(v) = 1/εE(R) (Eq. 3.2). We utilize the equivalence
principle a = |G∗|, see section (2.2). Additionally, we apply Eq.
(2.64). So, we derive:

ε′E =
1

εE · c2
· G ·M

R2
(3.6)

We use the well known term RS = 2G·M
c2 for the Schwarzschild

radius. So, we derive the following DEQ for εE(R):

ε′E =
1

εE
· RS

2R2
(3.7)

Solution of the DEQ for εE: For the case of a constant mass M ,
we solve the DEQ for εE with the following Ansatz:

εE(R) =

√
1− RS

R
(3.8)



40 CHAPTER 3. UNIVERSAL POSITION FACTOR

The derivative corresponds to the DEQ (3.7). Thus, Eq. (3.8)
is a solution. We use the two factors εE(R) and γ(v) in Eqs.
(3.2, 3.8, 3.1)). So, we derive a term for the invariant energy
depending on R and v:

E(R, v) = m0 · c2 ·

√
1− RS

R√
1− v2/c2

(3.9)

This term generally represents the functional dependence of the
energy onR and v. Landau and Lifschitz (1981) obtain the same
result (page 299), this confirms our derivation. We summarize:

Proposition 1 Energy in an isotropic vicinity of a mass:
In the constant isotropic vicinity of a field generating mass
or dynamic mass M , and at a circumferential radial coor-
dinate R (or at a gravitational parallax distance R), a probe
mass m0 has the following properties:

(1) The energy of the mass m0 can be directly analyzed.

(2) M generates a radial gravitational field with the value G∗ =
|~G∗| = GM

R2 .

(3) A local observer at R can locally observe the body’s ra-
dial velocity v(R) = ∂R

∂τ and its radial coordinate R = dGP , see
section (2.6) and Fig. (2.13).

(4) If the probe mass falls freely in the field of M , and if v = 0 at
R→∞, then the energy function E(R, v) of m0 is described
by Eq. (3.9):

E(R, v) = m0 · c2 ·

√
1− RS

R√
1− v2/c2

= m0 · c2 · γ(v) · εE(R) (3.10)

(5) In particular, that energy function E(R, v) of m0 represents
an invariant of the motion in the frame in which M is at rest
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and at the origin. The reason is that the law of energy conser-
vation holds in that frame, as the vicinity of M is constant, so
that the Noether (1918) theorem can be applied:

1 = γ(v) · εE(R) (3.11)

3.2 Derivation of the Schwarzschild metric

Idea: If the mass m0 is at free fall towards the field generating
mass M , then it has a velocity v relative to M at a distance R
from M . As a consequence of the velocity v, in the frame of M ,
the mass m0 could be described by the Minkowski metric3, see
Eq. (2.17):

ds2 =
−c2 · dt2

γ2(v)
+ dx2 · γ2(v) + dy2 + dz2 = 0 (3.12)

If we transform the Lorentz factor γ(v) to the position factor
εE(R), then we obtain a metric as a function of R. That metric
is elaborated in this section.

We consider the mass m0 at free fall in the isotropic vicinity
of the field generating mass M . For our analysis, we use the
rest frame of M . At a distance R from M , the mass m0 has a
velocity v. As a consequence of the velocity v alone, the mass
m0 would be described by the following line element (Eq. 2.17):

ds2(v) =
−c2 · dt2

γ2(v)
+ dx2 · γ2(v) + dy2 + dz2 (3.13)

We transform it to a function of the distance R alone. For it,
we use the relation of energy conservation 1 = γ(v) · εE(R):

ds2(R) = −c2dt2 · ε2
E(R) +

dx2

ε2
E(R)

+ dy2 + dz2 (3.14)

3Remind that we mark increments of time and radius by dt and dR in a dGP -map,
while we mark increments of time and radius by dτ and dL in a dLT -map. Hereby, we use
both maps as tools only. For instance, you can represent Earth with a terrestrial globe
or with maps in an atlas. Of course, if you use a map in an atlas, you do presumably still
think that Earth is nearly a ball or ellipsoid or geoid.
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If the mass m0 is at free fall until it reaches the distance R from
M , and if the velocity is slowed down to zero at R, then the
above line element describes the system correctly, as the metric
depends on R only in that case.

Usually, spherical polar coordinates are used. In that case,
the above line element is expressed as follows:

ds2 = −c2dt2ε2
E(R) +

dR2

ε2
E(R)

+R2dϑ2 +R2 sin2 ϑdϕ2 (3.15)

This metric described by the above line element is called
Schwarzschild metric, SM, see Schwarzschild (1916) or e. g.
Straumann (2013), Carmesin (1996), Hobson et al. (2006), see
also Carmesin (2022d). Hereby, the time increment dt is re-
duced by the position factor εE(R). This phenomenon is called
gravitational time dilation. Moreover, the radial length incre-
ment dR is increased by the inverse position factor 1/εE(R). So
there occurs a gravitational increase of length. We summarize
our findings:

Theorem 3 Derivation of the Schwarzschild metric

(1) In an isotropic vicinity of a mass M , the gravitational field
of the mass M and the gravitational parallax distance R = dGP
can be measured.

(2) On the basis of the gravitational parallax distance R = dGP ,
the polar coordinates (R, θ, φ) can be introduced.

(3) On the basis of the position factor εE(R), the metric tensor
gik(R, θ, φ) can be derived. The resulting metric tensor describes
the Schwarzschild metric:

gik(R, θ) =


1− RS

R 0 0 0

0 1

1−RSR
0 0

0 0 R2 0

0 0 0 R2 sin2 ϑ

 (3.16)
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with ηik =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and (3.17)

ds2 =
3∑
i=0

3∑
k=0

gik · ηik · dxi · dxk or (3.18)

ds2 = −c2dt2ε2
E(R) +

dR2

ε2
E(R)

+R2dϑ2 +R2 sin2 ϑdϕ2 (3.19)

(4) In particular, a time interval dt in a flat gravitational paral-
lax space is transformed to a dLT -time dτ in a curved light-travel
time space:

dτ = dt ·
√

1−RS/R (3.20)

Similarly, radial intervals between two locations A and B are
related as follows:

dL = dL(A,B) =
dR(A,B)√
1−RS/R

=
dR√

1−RS/R
(3.21)

3.3 Universality of the position factor

Question: In the isotropic vicinity of a mass M , each probe
mass m0 has the energy function E(R, v) = m0 ·c2 ·γ(v) ·εE(R),
with the same position factor εE(R) for each probe mass. Does
a monochromatic light signal or any other object have the same
position factor?

Definition 7 Energy available for transformation

If an object is at a circumferential radial coordinate or gravita-
tional parallax distance R from a field generating mass M , then
the following can be defined:

(1) If R is near the limit to infinity, then we call the radius R∞:

R∞ ≈ lim
R→∞

R or (3.22)
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1

R∞
<< 1 (3.23)

The value of a physical quantity q at R∞ is called q∞:

q∞ = q(R∞) (3.24)

(2) If an object, called objectb, starts a free fall at R∞ with the
energy E∞, then the object has the same energy at R:

E(R) = E∞ (3.25)

Thereby, E(R) consists of a factor Eav,b(R) that is available for
a transformation of energy at R and of a position factor εE,b(R)
of objectb that is inherent to the position of that object:

E(R) = Eav,b(R) · εE,b(R) or (3.26)

εE,b(R) =
E(R)

Eav,b(R)
(3.27)

Hereby, Eav,b(R) is called available energy of the object. It
can be measured at R with help of a transformation of that en-
ergy. For instance, a signal of monochromatic light can be ab-
sorbed at R by a black body, whereby that signal is transformed
into thermal energy. In this manner, the available energy is
basically defined by such a measurement at R.

(3) If an objectb starts a free fall at R∞ with the energy E∞,
then the available energy Eav(R) is a product of E∞ and a factor
γb(R):

γb(R) =
Eav,b(R)

E∞
(3.28)

Hereby, γb(R) describes the increase of internal energy during
free fall, and γb(R) is called internal energy factor.

In order to show the universality of the position factor, we show
the position factor εE,b(R) of objectb is equal to the position
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factor εE(R). Remind that εE(R) is the inverse of the Lorentz
factor.

For it, we consider a sequence of changes of the energy E∞ =
m0c

2 of a probe mass, whereby energy conservation holds at
each change:

Theorem 4 Universality of the position factor

If a probe mass m0 and an objectb are at circumferential radial
coordinates or gravitational parallax distances R from a field
generating mass M and in the isotropic vicinity of M , then the
following holds:

(1) If the probe mass m0 is at v = 0 at R∞, then m0 has its
energy:

E∞ = m0c
2 (3.29)

(2) In a first change, the probe mass m0 in part (1) is trans-
formed to an objectb. Thus, objectb has the energy E∞ in Eq.
(3.29):

Eb(R∞) = E∞ = m0c
2 (3.30)

(3) In a second change, the objectb in part (2) falls freely from
R∞ to R. Thus, the energy Eb in Eq. (3.30) is factorized as
follows, see Eq. (3.26):

Eb(R) = E∞ = Eav,b(R) · εE,b(R) (3.31)

(4) In a third change, a copy of the probe mass m0 in part (1)
falls freely from R∞ to R. Thus, the energy E∞ in Eq. (3.29)
is factorized as follows, see Eq. (3.26):

E∞ = Eav(R) · εE(R) (3.32)

Remind that the position factor is equal to the inverse Lorentz
factor, as m0 is a mass.

(5) In a fourth change, objectb at R in part (3) is transformed to
a mass at R. Thus, the available energy Eav,b(R) of the object
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is transformed to the available energy Eav(R) of a mass that
has the same energy and that experienced the same free fall. As
the available energy Eav,b(R) is transformed into the available
energy Eav(R), the two available energies are equal:

Eav(R) = Eav,b(R) (3.33)

(6) As each of the changes in parts (2-5) conserves the energy
of the object, The resulting energies in Eqs. (3.31) and (3.32)
are equal:

Eav(R) · εE(R) = Eav,b(R) · εE,b(R) (3.34)

According to part (5), the available energies in the above Eq.
are equal:

Eav(R) · εE(R) = Eav(R) · εE,b(R) (3.35)

As the available energies in the above Eq. cancel out, the posi-
tion factors in the above Eq. are equal:

εE(R) = εE,b(R) (3.36)

(7) As objectb is an arbitrary object in space, all objects in space
have the same position factor εE(R) as a function of R. Thus,
the position factor is universal.

Proof: The proof is provided by the transformations described
within the above theorem.

In the next section, we show that the universality of the position
factor has far reaching consequences for the fact of quantization
and for the universality of the quantization constant.
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Universal Quantization

Idea: A signal of monochromatic light can be described in two
ways:

as a wave with a circular frequency ω

and as a portion E of energy with the momentum p = E/c.

Thus, even at the classical level, there is a wave - particle dual-
ity, and we can try to derive a universal quantization therefrom.

In this chapter, we show the following: If portions of a physical
quantity propagate at the group velocity, see e. g. (Scheck,
2013, section 1.3.1) or (Kumar, 2018, sections 3.2 and 5.2), dωdk =
vg = c in a direction ~ej, and if they have a corresponding wave
vector component kj = k as well as a circular frequency ω, then
the portions are quantized in an emergent manner1.

In SR, such a portion has an energy dE and a corresponding
momentum component dpj = p = |~p|, so that the following
holds, (Landau and Lifschitz, 1971, Eq. 9.6):

dE

dp
= c or

dE

dpj
= c in direction of the unit vector ~ej (4.1)

Thereby, the ratio of the circular frequency dω and the corre-
sponding component of a wave vector dkj is as follows, (Landau
and Lifschitz, 1971, Eq. 48.4):

1The results of this chapter have been derived in similar contexts in Carmesin (2022d),
Carmesin (2022a).
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dω

dk
= c or

dω

dkj
= c in direction of ~ej (4.2)

So, the above fractions are equal:

dω

dk
=
dE

dp
= c or

dω

dkj
=
dE

dpj
= c in direction of ~ej (4.3)

As dω is nonzero, we can derive the following relation:

dp

dk
=
dE

dω
or

dpj
dkj

=
dE

dω
in direction of ~ej (4.4)

4.1 Possible minimal portion

In this section, we analyze a possible minimal measurable por-
tion of energy dE = Emin,ω1

that may occur at a circular fre-

quency ω1. Hereby, ω = ω(~k) is a function of the wave vector.
At propagation towards ~e = ~ej, ω = ω(k) is a function of the
absolute value k of the wave vector. Thereby, the elongation of
the wave is concentrated around a central value k1, and ω1 is
the value of the circular frequency at that value k1, ω1 = ω(k1),
see e. g. (Scheck, 2013, 1.3.1).

The corresponding portion of momentum is dp = pj,min,ω1
=

Emin,ω1
/c. So, the above relations, see Eqs. (4.1, 4.2, 4.3, 4.4),

can be derived for the minimal values in a similar manner. Thus,
the relation corresponding to Eq. (4.4) is obtained:

pmin,ω1

k1
=
Emin,ω1

ω1
or

pj,min,ω1

dkj,1
=
Emin,ω1

ω1
for ~e = ~ej (4.5)

The two fractions represent the same ratio K(ω).

pmin,ω1

k1
=
Emin,ω1

ω1
= K(ω1) or

pj,min,ω1

kj,1
=
Emin,ω1

ω1
= K(ω1) for ~e = ~ej (4.6)
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As the ratio K(ω1) has the same form as in the quantization
of light, see e. g. Griffiths (1994) or Kumar (2018), we call it
quantization ratio.

4.2 Universality of the quantization ratio

Question: Do different circular frequencies ω1 and ω2 have the
same quantization ratios K(ω1) and K(ω2)?

For it, we consider two minimal portions with circular fre-
quencies ω1 and ω2:

Theorem 5 Universal quantization

We analyze two minimal portions in section (4.1) that propagate
at v = c with two different circular frequencies. Thereby, we
call the smaller circular frequency ω1 and the larger circular
frequency ω2. The corresponding quantization factors are called
K(ω1) and K(ω2).

(1) The locations are not restricted, at which the minimal por-
tions in section (4.1) propagate. Thus, we can analyze these
portions in an isotropic vicinity of a field generating mass M .
Thereby, we can choose circumferential radial coordinates or
gravitational parallax distances R of the portions as desired.

(2) We analyze the minimal portion with circular frequency ω1

at the radius R = R∞ (DEF 7). According to Eq. (4.6), that
portion has the following energy:

Emin,ω1
= K(ω1) · ω1 for R∞ (4.7)

(3) According to THM (3), increments of time at R∞ and at R
are related as follows:

dt(R)

dt∞
= εE(R) (4.8)

In particular, such time increments can be periodic times T of
radiation. This is possible, as in each frame, the time between
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the same two maxima of the elongation is the periodic time:

T (R)

T∞
= εE(R) (4.9)

According to the definition of the circular frequency ω = 2π/T ,
the position factor is the following ratio of the circular frequen-
cies:

εE(R) =
ω1

ω2
or (4.10)

√
1− RS

R
= εE(R) =

ω1

ω2
=

ω∞
ω(R)

(4.11)

(4) As the vicinity of M is constant, the Noether (1918) theo-
rem is applicable, so that energy is conserved. Thus, the energy
Emin,ω1

at the start of the free fall in part (2) is equal to the
energy at R in part (3), see THM (4):

Emin,ω1
= K(ω1) · ω1 = Eav(R) · εE(R) (4.12)

Thus, the available energy is the ratio of the energy K(ω1) · ω1

at R∞ and the position factor at R:

Eav(R) =
K(ω1) · ω1

εE(R)
=

E∞
εE(R)

(4.13)

(5) The available energy Eav(R) is defined by its measurement,
see DEF (7). Similarly, the circular frequency ω2 is measured
at R. For instance, the wavelength λ of light is measured with a
spectrometer, and it can be transformed by ω = 2π · cλ. Thus, the
minimal energy Emin,ω2

is measured at R. Hence, the minimal
energy Emin,ω2

and the available energy at R are equal:

Emin,ω2
= K(ω2) · ω2 = Eav(R) (4.14)
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We apply the available energy in Eq. (4.13) to the energy
Emin,ω2

at R in Eq. (4.14):

Emin,ω2
= K(ω2) · ω2 =

K(ω1) · ω1

εE(R)
(4.15)

We apply the position factor in Eq. (4.11) to the energy Emin,ω2

at R in Eq. (4.15):

Emin,ω2
= K(ω2) · ω2 =

K(ω1) · ω1
ω1

ω2

= K(ω1) · ω2 (4.16)

We divide the energy in the above Eq. (4.16) by ω2:

K(ω2) = K(ω1) (4.17)

Thus, we showed that the quantization factors do not depend on
the circular frequency ω. According to Eq. (4.2), that quantiza-
tion ratio K(ω) does not depend on the wave number. Thence,
the quantization ratio K(ω) is a universal constant.

(6) Thereby, the value of the universal quantization ratio K(ω)
has been measured, and 2π ·K(ω) takes the following value:

2π ·K(ω) = 6.626 070 15 · 10−34 Js (4.18)

(7) The universal quantization ratio K(ω) is named reduced
Planck constant ~, whereby 2π · ~ is named Planck constant
h:

K(ω) = ~ =
h

2π
(4.19)

As a convention, the value of the Planck constant in Eq. (4.18)
is defined to be an exact value, see e. g. Newell et al. (2018) or
Workman et al. (2022).

(8) The transformation from a gravitational parallax distance
dR and a corresponding time dt to the values dL and dτ in
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curved spacetime, is provided by the Schwarzschild metric in
chapter (3).

(9) We show that the universality of quantization holds in an
even more general investigation: In the Schwarzschild metric,
the field generating or curvature generating mass M is clearly
distinguished from the probe mass m0. More generally, the probe
mass m0 does influence the available energy of the field gener-
ating mass M . When the available energy of M causes the
curvature, then RS is influenced by m0 and by the distance R.
Accordingly, the position factor is a function of these quantities,

εE, more general =
√

1− RS(M,m0,R)
R . In such a case, Eq. (4.10) can

still be applied, whereby the term in Eq. (4.11) becomes more
complicated. However, the derivation can still be applied. In
general, the quantization ratio is universal, whenever the time
dilation is expressed by a factor, T (R)

T∞
= εE, more general(R) = ω∞

ω(R)

= ω1

ω2
. This should be the case, whenever the time is a scalar

quantity, not a vector or tensor, for instance. This is a very
general condition. In particular, this relation is more general
than the framework of the Einstein field equation, see e. g.
Einstein (1915), Hilbert (1915). The relation shows the follow-
ing:

Nature is quantized.

The constant of quantization is universal.

The Einstein field equation is a semiclassical approximation
Carmesin (2022f), Carmesin (2023b).

(10) We show that the universality of quantization holds at
higher dimension. Note that higher dimension has been ob-
served, see Lohse et al. (2018) or Zilberberg et al. (2018).

If a change of the dimension from a dimension D1 to a lower
dimension D2 causes an increase of a wavelength λvol,D1

of vol-
ume to the wavelength λvol,D2

according to a dimensional dis-
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tance enlargement factor ZD1→D2
as follows

λvol,D2
= λvol,D1

· ZD1→D2
, (4.20)

then the following holds:

(10a) The waves of volume are quantized, as they propagate with
v = c. Thereby, there occurs a constant of quantization:

Emin,ωvol,D1
= K(ωvol,D1

) · ωvol,D1
(4.21)

(10b) The corresponding circular frequencies change as follows:

ωvol,D1

ωvol,D2

= ZD1→D2
(4.22)

(10c) At the dimensional transition, the available energy (of
the quantum) at D1, Emin,ωvol,D1

is reduced by the increase of the
wavelength to the following available energy at D2:

Eav(D2) =
Emin,ωvol,D1

ZD1→D2

=
K(ωvol,D1

) · ωvol,D1

ZD1→D2

(4.23)

(10d) Similarly as in part (5), the available energy at D2 is equal
to the minimal energy of the quantum:

Eav(D2) = K(ωvol,D2
) · ωvol,D2

= Emin,ωvol,D2
(4.24)

(10e) As a consequence of the energies in Eqs. (4.22, 4.23,
4.24), the constants of quantization are equal:

K(ωvol,D2
) · ωvol,D2

=
K(ωvol,D1

) · ωvol,D1

ZD1→D2

= K(ωvol,D1
) · ωvol,D2

(4.25)
or K(ωvol,D2

) = K(ωvol,D1
) (4.26)

(11) In principle, the quantization constant K(ωvol,D1
) of the

volume could be different from the quantization constant K(ω1)
of radiation. However, if a minimal portion of energy of volume
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is at its zero-point oscillation at a wavelength λ, and if a mini-
mal portion of energy of radiation is at its zero-point oscillation
at the same wavelength λ, then the wave functions are geomet-
rically equal. Accordingly, they should have the same zero-point
energy, ZPE:

K(ω1) ·
π · c
λ

= ZPEradiation = ZPEvol = K(ωvol,D1
) · π · c

λ
(4.27)

or K(ω1) = K(ωvol,D1
) (4.28)

Correspondingly, the same constant of quantization occurs for
an object at different circular frequencies and for different types
of objects.

(12) The circular frequency ω(k) as a function of the wave num-
ber k is obtained by integration:

ω(k) = ω0 +

∫ k

0

dω

dk3
dk3 (4.29)

with ω0 = ω(k = 0) (4.30)

Hereby, the derivative dω
dk3

is equal to the group velocity vg = c.
So we obtain:

ω(k) = ω0 + c · k (4.31)

As a consequence, the phase velocity vp, see e. g. (Kumar,
2018, Eq. 3.2.8), is as follows:

vp =
ω(k)

k
=
ω0

k
+ c =

ω0

k
+ vg (4.32)

Thus, the phase velocity vp can differ from the group velocity vg,
see e. g. (Kumar, 2018, section 5.2 or p. 191). For instance,
such a difference vp 6= vg occurs in the Cherenkov radiation,
see e. g. (Landau and Lifschitz, 1963, section 115). Another
example is provided by de Broglie (1925) in his theory of matter
waves: These exhibit phase velocities vp larger than the velocity
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of light and larger than the group velocity vg, vp > c > vg (see
Eqs. 1.2.3, 1.2.6).

In the case of nonzero ω0, and in the limit of zero momentum
p = ~k or infinite wavelength λ, the phase velocity vp tends to
infinity:

lim
p→0

vp = lim
k→0

vp = lim
λ→∞

vp =∞ (4.33)

As the light horizon is finite, that limit is almost, but not fully,
achieved in a causal system in spacetime.

For instance, in electromagnetic waves, the phase velocity in
vacuum is c, so ω0 is zero. However, in chapter (8), we will
derive various phase velocities, corresponding to nonzero ω0, in
the dynamics of volume.

Example: An example for such a minimal portion is the pho-
ton. Pound and Rebka (1960) have confirmed the gravitational
redshift of the photon experimentally, we analyzed that redshift
above theoretically.

Altogether, SR together with the curvature of spacetime de-
scribed by the position factor cause the quantization of waves
propagating at v = c, we name it emergent quantization.
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Chapter 5

Classical Expansion of Space

Idea: The kinetic gas theory shows how the dynamics of lo-
cal molecules provides the equation of state of the global ideal
gas. Similarly, the Schwarzschild metric of a local mass should
provide the global dynamics of space.

Accordingly, in this section, we unify the classical local dy-
namics of the position factor and the classical global expansion
of space. For it, we derive the Friedmann Lemâıtre equa-
tion, FLE from the position factor.

5.1 Expansion of space

Einstein (1917) analyzed a possible expansion of the space.
Slipher (1915) discovered the redshift of distant galaxies, Wirtz
(1922) analyzed empirical evidence for the expansion of space,
and Hubble (1929) obtained a convincing empirical basis for
that expansion of space. That expansion is usually described
by a uniform scaling.

Models of that expansion of space since the Big Bang typi-
cally apply the cosmological principle: isotropy and homogene-
ity of space, including its content, see e. g. Karttunen et al.
(1996). Accordingly, we model space by a homogeneous ball
with a density ρ, see Fig. (5.1). So, we derive the DEQ for the
time evolution of the radius of such a homogeneous ball.

57
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ρ

surroundings

m

M

ρ R

Figure 5.1: Ball with mass M and radius R embedded in a ho-
mogeneous surrounding and exhibited to a probe mass m or
m0.

5.2 Derivation of the FLE

In this section, we derive the Friedmann Lemâıtre equation,
Friedmann (1922) and Lemaitre (1927). The DEQ describes
the expansion of space since the Big Bang. For it, we apply the
position factor.

5.2.1 DEQ of uniform scaling: derivation

The surroundings of the ball do not generate a field ~G∗ in the
embedded sphere (section 25.2.1). A homogeneous sphere with
a mass M generates a field in its vicinity that is equal to the
field generated by the mass M in the center of the ball (Gauss
(1840)). So the position factor applies (Eq. 3.9), and thus the
energy of a probe mass with the condition (R|v) = (R|Ṙ) =
(∞|0) at some time is as follows (other conditions are analyzed
in Carmesin (2020b)):

E(R, v) = m0 · c2 · γ(v) · εE(R) = E0 alias Eref (5.1)
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Thereby, the factors are as follows:

γ(v) =
1√

1− v2/c2
; εE(R) =

√
1− RS

R
and m0 · c2 = E0

(5.2)
The Eq. (5.1) represents a DEQ, as it contains v, which in turn
represents a derivative. This DEQ describes the dynamics of
the probe mass. Next, we transform this DEQ, in order to
obtain a transformed DEQ, still describing the dynamics of m
and R(t).

5.2.2 Structured energy function

In this section, we derive a structured energy function. This
may be interpreted as a result of a mathematical transformation
of the DEQ, or it may be interpreted physically in addition:

The structured energy function might be interpreted as a
normalized excess energy (Carmesin (2020b)) as follows:

In SR, the difference of the square E2 of the energy and of
the square of the own energy m2

0 · c4 = E2
0 represents the square

of the kinetic energy p2 · c2. By construction, it represents the
square of the excess energy that the mass m has compared to
its own mass m0.

According to the position factor, that excess energy contains
the kinetic energy and, additionally, a gravitational energy in
the field.

Correspondingly, we derive the excess energy as follows: We
take the square of Eq. (5.1), and we subtract the squared own
energy m2

0c
4 (so we obtain the square of the generalized excess

energy):

E(R, v)2 −m2
0c

4 = m2
0 · c4 · (εE(R)2 · γ(v)2 − 1) (5.3)

The model of the uniform scaling of space does not apply
an object moving or propagating through space, accordingly,
in that model there is no factor γ2. Correspondingly, in order
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to transform the local physics of the probe mass to the global
physics of the uniform scaling of space, we divide by γ2 (Eq.
5.1):

E(R, v)2 −m2
0c

4

γ2
= m2

0 · c4 · (εE(R)2 − γ(v)−2) (5.4)

In order to simplify, we insert the factors εE(R) and γ(v):

E(R, v)2 −m2
0c

4

γ2
= m2

0c
4 ·
(
v2

c2
− RS

R

)
(5.5)

Conventional form: In this paragraph, we derive a conventional
energy function with a conventional kinetic and potential energy
term. For it, we divide by 2m0c

2. So, we derive:

E(R, v)2 −m2
0c

4

2γ2m0c2
= m0 · c2 ·

(
v2

c2
− RS

R

)
· 1

2
(5.6)

We apply the Schwarzschild radius RS = 2GM
c2 : So, the result

is a conventional structured energy function. We denote that
energy function by a bar, Ē(R, v). Thus, we derive Ē(R, v):

E(R, v)2 − E2
0

2γ2E0
=: Ē(R, v) =

m0 · v2

2
− G ·M ·m0

R
(5.7)

Form with the Hubble parameter: In this part, we transform the
DEQ (5.5) further, so that we obtain a term for the Hubble
parameter:

H =
Ṙ

R
and R 6= 0 (5.8)

For it, we multiply Eq. (5.5) with 1
m2

0·c4
· c2R2 , and we use the

density ρ = M
R3·4π/3 . So, we derive:

E(R, Ṙ)2 −m2
0c

4

m2
0 · c4γ2

· c
2

R2
=
Ṙ2

R2
− 8πG · ρ

3
(5.9)



5.2. DERIVATION OF THE FLE 61

We identify the scaled squared energy −E(R,ṙ)2−m2
0c

4

m2
0·c4γ2 , or the

scaled energy term −2Ē(R,Ṙ)
m0·c2 , with the curvature parame-

ter k (Friedmann (1922), Lemaitre (1927), Stephani (1980)),

Carmesin (2021d), Carmesin (2021a)). We identify Ṙ2

R2 with the
squared Hubble parameter H2, and we solve for H2. So, we de-
rive the Friedmann Lemâıtre equation, FLE (Friedmann
(1922) and Lemaitre (1927)), the DEQ for the homogeneous
system:

H2 =
8πG · ρ

3
− k · c

2

R2
(5.10)

In the above Eq. the curvature parameter is − 2
m0c2

multiplied
by the structured energy term:

k = − 2

m0c2
· Ē(R, Ṙ) = − 2

m0c2
· E(R, Ṙ)2 − E2

0

2γ2E0
(5.11)

Hereby, the energy E(R, Ṙ) takes the value E0 at R to infinity.
Thus, for R to infinity, the structured energy function Ē(R, Ṙ)
is zero. Hence, Ē(R, Ṙ) is zero during the whole time evolution
of the system, as the law of energy conservation holds. Thence,
the curvature parameter is zero, as a result of the dynamics,
ktheo = 0.

That theoretical result ktheo = 0 is confirmed by observations
(Collaboration (2020), Bennett et al. (2013)). As the curvature
parameter k is zero, space is globally flat. We summarize our
derivation:

Theorem 6 FLE derived from the position factor

The expansion of the universe has the following properties, see
(Carmesin, 2021d, THM 3).

(1) In classical GR, it is described by a uniform scaling with
a scale factor R(t) Fig. (5.1).
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(2) In classical GR, the time evolution of the scale factor R(t)
is described by the FLE:

H2 =

(
Ṙ

R

)2

=
8πG · ρ

3
− k · c

2

R2
(5.12)

(3) The FLE of that uniform scaling can be derived from the
time evolution of a microscopic probe mass m as follows:

(3a) At a density ρ, there is a homogeneous ball of the universe
with the same density and generating a field ~G∗, and m is at
the surface of that ball (Fig. 5.1).

(3b) The time evolution of the location of m is derived in the
dGP frame and from the position factor, see the DEQ (5.1), and
the transformed DEQ (5.7) is derived from the position factor.

(4) Thereby, these above two DEQs use a structured energy
function Ē(R, Ṙ) with Ē(R, Ṙ) = 0 = k = invariant:

−k :=
2Ē(R, Ṙ)

m0 · c2
with Ē(R, Ṙ) =

m0Ṙ
2

2
− GMm0

R
(5.13)

(5) That structured energy function of m0 is defined as
follows, whereby it is proportional to E0 and to a normalized
energy Enorm = Ē

E0
:

E(R, Ṙ)2 − E2
0

2γ2E0
=: Ē(R, Ṙ) = E0 ·

(
Ṙ2

2c2
− G ·M
R · c2

)
(5.14)

5.3 A solution of the flatness problem

If a law in physics is particular for each type of atom, molecule,
matter or energy, then that law is not universal. Conversely, a
law in physics that holds for each type of matter or energy is
universal.
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In this chapter, for the ideal case of a homogeneous universe,
we used the local dynamics of the position factor, in order to de-
rive the global flatness of the formed space. This derived global
flatness is universal, as it does not depend on the composition
of the objects contained in space.

5.4 Second solution of the flatness problem

In the above solution of the flatness problem, we use energy
conservation. In our second solution, we do not use energy
conservation. Of course, we do not state energy conservation
would be violated, but we do not apply energy conservation.
In principle, one might think that energy could be lost at a
redshift of radiation, if one does not consider a corresponding
gravitational potential, for instance.

5.4.1 Notations in cosmology

In this section, we summarize notations. In cosmology, dynami-
cally essential densities are denoted as follows, see e. g. Hobson
et al. (2006) or Carmesin (2019b) or (Carmesin et al., 2020, pp
296-301).

Essential densities in cosmology: The essential densities in cos-
mology are the density of matter ρm, of radiation ρr and of the
cosmological constant ρΛ, see Einstein (1917), (Hobson et al.,
2006, p. 389, Eq. 15.5), Karttunen et al. (1996), or the glossary:

ρ = ρm + ρr + ρΛ (5.15)

In the case of the density of matter, heterogeneity is essen-
tial, see e. g. Peebles (1973), Kravtsov and Borgani (2012),
Carmesin (2021d), Haude et al. (2022).

Time evolution: In the time evolution, present-day values are
marked by the subscript zero. For instance, the present-day
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value of the Hubble parameter is the Hubble constant H0 =
H(t0). The inverse of the Hubble constant is called Hubble
time, at a good approximation, see Hobson et al. (2006) or
Carmesin (2019b), it is the age of the universe:

tH0
= 1/H0 (5.16)

During the Hubble time, light traveled the light-travel distance
c · tH0

, it is called Hubble radius:

RH0
= c · tH0

= c/H0 (5.17)

The density of flat space is called critical density, we derive with
the FLE:

H2 = 8πG/3ρcr and H2
0 = 8πG/3ρcr.0 (5.18)

or ρcr.0 =
3H2

0

8πG
(5.19)

The present-day curvature parameter is expressed with a den-
sity:

ρk = −ρcr
c2

H2R2
k or Ωk = − c2

H2R2
k (5.20)

Density parameters: The ratio of a density and the critical den-
sity is called density parameter:

ρj/ρcr = Ωj and ρj,0/ρcr.0 = Ωj,0 with j ∈ {r,m,Λ, k} (5.21)

Einstein (1917) introduced the cosmological constant Λ. Ac-
cordingly, the corresponding density is a constant:

ρΛ(t) = ρΛ,0 (5.22)

As the volume is proportional to the third power of the radius
R3(t), and as matter does not change as a consequence of ex-
pansion, the density of matter is proportional to R−3(t):

ρm(t) = ρm,0 · (R/RH0
)−3 = ρm,0/a

3 (5.23)
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Hereby, we introduce the scaled radius and the redshift z =
∆λ/λ:

a(t) = R(t)/RH0
= 1/(z + 1) (5.24)

As the volume is proportional to the third power of the ra-
dius R3(t), and as the energy or dynamical density of radia-
tion changes as a consequence of expansion by the redshift pro-
portional to R−1(t), the density of radiation is proportional to
R−4(t):

ρr(t) = ρr,0 · (R/RH0
)−4 = ρm,0/a

4 (5.25)

Using the above definitions, we express the density in terms of
the density parameters as follows:

ρ(a) = ρcr.0(ΩΛ + Ωk,0a
−2 + Ωm,0a

−3 + Ωr,0a
−4) (5.26)

And the dynamics in the FLE are as follows:

H2 = H2
0(ΩΛ + Ωk,0a

−2 + Ωm,0a
−3 + Ωr,0a

−4) (5.27)

Hereby, the sum of the density parameters is one:

1 = ΩΛ + Ωk,0 + Ωm,0 + Ωr,0 (5.28)

The Planck-Collaboration (2020) measured the following pa-
rameters, see the TT-mode in table 2, the abstract as well as
Carmesin (2019b) for an evaluation of Ωr,0:

ΩΛ = 0, 679± 0.013 (5.29)

Ωm,0 = 0.321± 0.013 (5.30)

Ωk,0 = 0.001± 0.002 (5.31)

Ωr,0 = 9.265 · 10−5 · (1± 0.031) (5.32)

H0 = 66.88± 0.92
km

s ·Mpc
(5.33)

Summarizing notation The proportionality of a density ρj can
be characterized as follows:

ρj ∝ R−3·(1+wj) with
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Figure 5.2: Mass or dynamical mass M in the ball with present-
day radius RH0

as a function of the redshift z. Thereby, the
density ρ(z) in Eq. (5.26, 5.24) is a function of the redshift z,
see Eqs. (5.35, 5.36).

wj =


1/3 for j = r

0 for j = m

−1/3 for j = k

−1 for j = Λ

(5.34)

5.4.2 Time evolution of M

As the only possibility for a nonzero curvature parameter is
a time evolution of the field generating mass M , we analyze
that time evolution. For instance, we consider a ball with the
present-day radius equal to the Hubble radius. At a scaled
radius a(t), that ball had the radius a(t). Thus, that ball
had the following mass or dynamical mass, with the density in
Eq. (5.26), the critical density and the parameters (see section
5.4.1):

M(a) = ρ(a) · 4π/3 · a3 ·R3
H0

or (5.35)

M(z) = ρ(z) · 4π/3 · 1/(1 + z)3 ·R3
H0

(5.36)
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That mass or dynamical mass M as a function of the redshift is
shown in Fig. (5.2). That function exhibits a local minimum.
Thus, that (dynamical) mass M is constant at the local mini-
mum zconst, so that the density parameter of curvature is zero
at that redshift:

Ωk =
−c2

H2R2
· k and Ωk(zconst) = 0 (5.37)

That result implies that the curvature is zero also at smaller
redshifts z ≤ zconst, or at later times t ≥ tconst, see next two
sections.

5.4.3 Time derivative of Ωk

In this section, we derive the time derivative of Ωk. It has also
been provided in (Hobson et al., 2006, Eq. 15.48).

We apply the time derivative to the FLE:

2ṘR̈

R2
− 2Ṙ3

R3
=

8πG

3

∑
j=r,m,k,Λ

ρcrit.,0Ωj,0

a3(1+wj)

ȧ

a
(−3(1 + wj)) (5.38)

We identify a−1ȧ with H and ρcrit.,0 ·Ωj,0 · a−3(1+wj) with ρj, we

use H = Ṙ
R , and we multiply by 1

2H3 :

R̈R

Ṙ2
− 1 = −4πG

3H2
·
∑

j=r,m,k,Λ

ρj · 3(1 + wj) or

R̈R

Ṙ2
= −4πG

3H2
·
∑

j=r,m,k,Λ

ρj · (1 + 3wj) (5.39)

We apply the time derivative to ρj = ρcrit.,0 · Ωj,0 · a−3(1+wj):

ρ̇j = −3(1 + wj)Hρj (5.40)

We apply the time derivative to Ωj = 8πG
3H2ρi:

Ω̇j =
8πG

3H2
·

(
ρ̇j −

2Ḣ

H
ρj

)
(5.41)
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We combine the above two equations:

Ω̇j = −ΩjH ·

(
3(1 + wj) +

2Ḣ

H2

)
(5.42)

We apply 2Ḣ
H2 = 2R̈R

Ṙ2
− 2 to the above equation:

Ω̇j = ΩjH ·

(
−3− 3wj −

2R̈R

Ṙ2
+ 2

)
(5.43)

We use Eq. (5.39):

Ω̇j = ΩjH ·

−1− 3wj +
8πG

3H2
·
∑

j=r,m,k,Λ

ρj · (1 + 3wj)

 or

Ω̇j = ΩjH ·

−1− 3wj +
∑

j=r,m,k,Λ

Ωj · (1 + 3wj)

 or

Ω̇j = ΩjH · (−1− 3wj + Ωm + 2Ωr − 2ΩΛ) (5.44)

In particular, we apply the case j = k to the above equation.

Ω̇k = ΩkH · (Ωm + 2Ωr − 2ΩΛ) (5.45)

5.4.4 Time evolution of Ωk

We apply the method of the analysis of the curvature parameter
k and of the density parameter Ωk as a function of the radius
r of the ball. Firstly, at very small R or in the very early uni-
verse, the radiation was blue-shifted compared to the present-
day primordial radiation, for details see Carmesin (2021a). In
principle, that could have caused an increased field generating
mass or dynamic mass M in the ball in Fig. (5.1). In principle,
that could have caused a large positive curvature, as proposed
by (Hobson et al., 2006, p. 417) or by Guth (1981). This could
be the case even if that effect was made smaller by the era of
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’cosmic inflation’, see e. g. Guth (1981), Carmesin (2019b).
We will show that such possible values of curvature in the early
universe are not essential for the curvature in the present-day
universe:

Secondly, the curvature is zero at zconst or at the time tconst.
Thirdly, the density parameter Ωk in Eq. (5.37) is a function of
time. With it and the FLE, the time derivative of that density
parameter can be derived, see section (5.4.3):

Ω̇k = Ωk[H · (Ωm + 2Ωr − 2ΩΛ)] (5.46)

As the term in the rectangular bracket does not become infinite
at redshifts zconst or at the time tconst, that bracket is limited by
its maximum and by its minimum:

[H · (Ωm + 2Ωr − 2ΩΛ)] ≤ Bmax (5.47)

[H · (Ωm + 2Ωr − 2ΩΛ)] ≥ Bmin (5.48)

With it, we derive an upper limit Ωk,upper and a lower limit
Ωk,lower of the density parameter as follows:

Ωk,lower ≤ Ωk ≤ Ωk,upper (5.49)

Ωk,upper/dt = Ωk,upper ·Bmax (5.50)

Ωk,lower/dt = Ωk,lower ·Bmax (5.51)

The solutions are exponential functions with the initial value
Ωk(zconst):

Ωk,upper = Ωk(zconst) · eBmax·(t−tconst) = 0 (5.52)

Ωk,lower = Ωk(zconst) · eBmin·(t−tconst) = 0 (5.53)

As both functions are zero, and as the density parameter is
limited by these limiting solutions, the density parameter is
zero at times tconst or at redshifts zconst:

Ωk = 0 for t ≥ tconst or z ≤ zconst (5.54)
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Altogether, we derived that the curvature is zero at the present-
day universe. Thus, we derived a second solution of the flatness
problem. We summarize our finding, see also Carmesin (2021d):

Theorem 7 Unification of micro- and macrodynamics

(1) The classical expansion of the universe since the Big Bang
has been derived in the dGP frame from the local dynamics of
space described by the position factor, see (Carmesin, 2021d,
THM 3). For it, a homogeneous density has been modeled, ac-
cording to the cosmological principle, see e. g. Einstein (1917),
Friedmann (1922), Lemaitre (1927), Karttunen et al. (1996).

(2) Thereby, it has been shown that the curvature parameter is
zero, independent of the composition of objects in space. So, the
flatness problem has been solved in a universal manner.

(3) Moreover, the derivation shows that the dGP frame is com-
patible with the FLE.

(4) In a second solution of the flatness problem, see section
(5.4), the flatness is derived on the basis of cosmological pa-
rameters, of a minimum of the mass or dynamic mass M in
a prototypical ball of the universe (Fig. 5.2) and of the time
derivative of the density parameter of curvature Ωk.

(5) Altogether, a first unification has been derived: the unifi-
cation of the classical local dynamics in GR with the classical
global dynamics in GR.



Chapter 6

Energy Density of the
Gravitational Field G∗

Idea: If a probe mass changes its position in a gravitational
field, then the change ∆E of energy of the probe mass can be
determined. If that motion causes a change ∆~G∗ of the field,
then the change ∆E might be used in order to derive the energy
of the changed field ∆~G∗.

Accordingly, in this chapter, we apply the law of energy con-
servation, in order to derive the energy density ugr.f and the

density ρgr.f = ugr.f/c
2 of the gravitational field ~G∗.

6.1 Absolute value of ρgr. f.

In this section, we derive the absolute value |ρgr. f.| of the energy
density ρgr. f. of the gravitational field |G∗(R)| = |G∗(dGP )|. For
it, we analyze the energy ∆EM that is necessary in order to lift
a mass M in a shell with a radius R to a shell with a radius
R + ∆R, see Fig. (6.1). Thereby, the mass is lifted as follows:
Differential parts dM are lifted, while the part Mrest is still at
R. Moreover, the velocity of M remains approximately zero.
So, a part dM is lifted at the following gravitational field of the
part Mrest, see theorem (2):

|~G∗of Mrest
(R)| = G ·Mrest

R2
(6.1)
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surroundings ~G∗

R

Mrest

∆R

Figure 6.1: A mass M (dark grey) in a shell at a radius R is lifted
to a radius R+ ∆R as follows: Differential parts dM are lifted,
while the rest Mrest is still at R. Thereby the field G∗ (medium
grey) in the shell with radius R and thickness ∆R becomes zero,
when the whole mass is at R + ∆R (see Fig. 6.2).

So, the field |G∗of Mrest
| is proportional to the part Mrest (Fig.

6.2). If a mass dM is lifted, and if the mass Mrest is still at
R, then dM experiences the following force, see theorem (2):
|~FG| = |~G∗of Mrest

(R)| · dM . Thus, the following energy dE =

|~FG| ·∆R is required:

dE = |~G∗of Mrest
(R)| · dM ·∆R =

G ·Mrest

R2
· dMlifted ·∆R (6.2)

We derive the full change in gravitational energy ∆EM by inte-
grating the above Eq.:

∆EM =

∫ E

0

dE ′ (6.3)

We apply Eq. (6.2):

∆EM =

∫ M

0

G ·Mrest

R2
dMlifted ·∆R (6.4)
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Mrest,p

|G∗Mrest,p
|

Mrest0

|G∗|

Figure 6.2: The field |G∗| is shown as a function of the mass Mrest,
that is still at the shell with the radius R. A particular value
Mrest,p is marked.

We substitute the change dMlifted of the lifted mass to the
change dMrest of the rest mass. As the rest mass Mrest is de-
creased by dMlifted, we obtain dMlifted = −dMrest. At the lower
bound of the integral, Mrest has the value M of the complete
mass that is lifted. And at the upper bound of the integral,
Mrest has the value zero, as the whole mass has been lifted.
Altogether, the substitution yields:

∆EM = −
∫ 0

M

G ·Mrest

R2
dMrest ·∆R (6.5)

We evaluate the integral:

∆EM =
G ·M 2 ·∆R

2R2
(6.6)

6.2 Free fall of M

In order to identify the energy density of the gravitational field,
we analyze the inverse process:

Initially, the mass M is distributed isotropically at R+ ∆R.
Then the mass M falls freely towards R. Thereby, the following
holds:
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Firstly, the potential energy Epot is decreased by the value ∆EM

in Eq. (6.6):

∆Epot = −∆EM = −G ·M
2 ·∆R

2R2
(6.7)

Secondly, the energy E(M) of M does not change, according to
the law of energy conservation.

Thirdly, the mass M does not change, as M = E(M)/c2.

Fourthly, the internal energy Eintern of M is equal to ∆EM in
Eq. (6.6), as the energy of M does not change:

∆Einternal = ∆EM =
G ·M 2 ·∆R

2R2
(6.8)

Fifthly, the potential energy Epot is located outside M . At a
radial coordinate larger than R+ ∆R, there is no change, as M
is not changed. At a radial coordinate smaller than R, there is
no change, as there is no field. Thus, the change occurred in the
shell at radial coordinate between R and R + ∆R. Moreover,
in that shell, there emerged the gravitational field according to
theorem (2). Accordingly, we derive the energy density in that
shell, and we identify that energy density by the energy density
of the gravitational field ugr.f .

The above analysis holds for an observer, who interprets M
as a sum of rest masses, e. g. of elementary particles1.

Absolute value |ugr.f | of the energy density ugr.f of the field: The
field |G∗| is in the shell with radius R and thickness ∆R (see
Fig. 6.1). The corresponding volume is ∆V = 4π ·R2 ·∆R. So,
we derive the energy density by dividing the energy ∆EM by
the volume ∆V . So, we get:

|ugr.f | =
∆EM

∆V
=

G ·M 2 ·∆R
2R2 · 4π ·R2 ·∆R

(6.9)

1If the observer assigns the change of energy via the position factor εE to the mass
M , then the same energy can hardly be assigned a second time to the field.
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E

E = M · c2 + Egr. f.

R

∆EM

E = M · c2

R + ∆R

Figure 6.3: The energy of the mass is shown at the initial radius
R and at the final radius R + ∆R.

We simplify the above term, we expand by G, and we apply the
field |G∗| = G·M

R2 , see theorem (2). So, we derive:

|ugr.f | =
~G∗2

8π ·G
= |ρgr. f.| · c2 (6.10)

Hereby, ρgr. f. is the mass density corresponding to the energy
density of the gravitational field according to the equivalence of
mass and energy.

6.2.1 Sign of ugr.f

As the potential energy has a negative sign, the energy density
ugr. f. of the gravitational field has a negative sign as well. Note
that the negative sign of the energy density ugr. f. is a direct
consequence of the fact that gravity is attractive. Moreover,
that negative sign does not cause any difficulty in the following,
see also Carmesin (2021d):

Theorem 8 Energy density of the gravitational field

(1) The gravitational energy is inherent to modifications of space
such as curvature or additionally formed volume or a gravita-
tional field.
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(2) A gravitational field ~G∗ has the energy density uf,par,grav as
follows:

uf,par,grav = ρgr. f. · c2 = −
~G∗2

8π ·G
or

|uf,par,grav| = |ρgr. f.| · c2 =
~G∗2

8π ·G
(6.11)

(3) In an isotropic vicinity of a field generating mass M and
at a distance R = dGP from the mass M , a gravitational field
G∗(R) occurs as follows, see theorem (2):

|~G∗| = G ·M
R2

(6.12)



Part II

Theory of Dynamic Volume
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Chapter 7

Caused Additional Volume

In this chapter, we show that a nonzero mass or dynamic mass
M with an isotropic vicinity of M causes additional volume and
a corresponding additional dark energy or energy of the volume.

7.1 A mass causes curvature of spacetime

Idea: We compare the isotropic vicinity of a nonzero mass
M with the same vicinity in the zero mass limit. Thereby, we
realize that the mass M causes curvature of spacetime according
to the Schwarzschild metric. This comparison is illustrated in
Fig. (7.1).

Theorem 9 A mass causes curvature of spacetime.

If a mass or dynamic mass M is in an empty environment, and
if M is neither accelerated nor rotating nor charged, then the
following holds:

(1) The vicinity of M is isotropic.

(2) The vicinity of M is characterized by the Schwarzschild
metric in THM (3):

79
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dRdRdRdRdR

dLdLdLdLdL

A

B

dLT,M→0

dLT

M

R

Figure 7.1: Two maps: A mass M causes nonzero curvature in its
vicinity, illustrated by the upper map. In the zero mass limit,
that curvature vanishes, illustrated by the lower map.

in polar coordinates : (7.1)

gik,SM(R, ϑ) =


ε2
E 0 0 0

0 ε−2
E 0 0

0 0 R2 0

0 0 0 R2 sin2 ϑ

 (7.2)

with RS =
2G ·M
c2

(7.3)

and εE(R) =

√
1− RS

R
(7.4)

Hereby, the Schwarzschild radius RS is used as an abbrevia-
tion, and εE(R) is the position factor.
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(3) In the zero mass limit, the isotropic vicinity of M is char-
acterized by the metric of flat space:

in polar coordinates : (7.5)

gik,flat(R, ϑ) = lim
M→0

gik,SM(R, ϑ) (7.6)

gik,flat(R, ϑ) =


1 0 0 0
0 1 0 0
0 0 R2 0

0 0 0 R2 · sin2 ϑ

 (7.7)

The metric of flat space has zero curvature.

(4) A nonzero value of the mass or dynamic M causes a nonzero
curvature of spacetime according to the Schwarzschild metric.

Proof

(1) AsM does not rotate, it does not cause any anisotropic drag,
see e. g. Kerr (1963). As M is not charged, it does not cause
any conceivable anisotropic interaction, see e. g. Workman
et al. (2022). As the vicinity of M is empty, there is no external
anisotropic effect. Altogether, the vicinity of M is isotropic.

(2) As M and its vicinity are isotropic, that vicinity is charac-
terized by the Schwarzschild metric, see Schwarzschild (1916)
or THM (3).

(3) In the zero mass limit, the Schwarzschild radius is zero:

lim
M→0

RS = lim
M→0

2G ·M
c2

= 0 (7.8)

As a consequence, the position factor is one:

lim
M→0

εE(R) = lim
M→0

√
1− RS

R
= 1 (7.9)

Consequently, the zero mass limit of the Schwarzschild metric
is the metric of flat space:
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lim
M→0

gik,SM (7.10)

= lim
M→0


ε2
E 0 0 0

0 ε−2
E 0 0

0 0 R2 0

0 0 0 R2 sin2 ϑ

 (7.11)

=


1 0 0 0
0 1 0 0
0 0 R2 0

0 0 0 R2 · sin2 ϑ

 (7.12)

= gik,flat(R, ϑ) (7.13)

Flat space has zero curvature.

(4) In the isotropic vicinity of M , a nonzero value of M causes
a nonzero value of the Schwarzschild radius:

M > 0→ RS =
2G ·M
c2

> 0 (7.14)

A nonzero value of the Schwarzschild radius causes a value of
the position factor smaller than one:

RS > 0→ εE(R) =

√
1− RS

R
< 1 (7.15)

A value of the position factor smaller than one causes a cur-
vature of spacetime according to the Schwarzschild metric. In
that case, the Schwarzschild metric differs from the metric of
flat space. Thus, the Schwarzschild metric has nonzero curva-
ture, in this case.

As a consequence of the transitivity of implications, a nonzero
value of M causes a nonzero curvature of spacetime according
to the Schwarzschild metric.

Altogether, this proves all parts of the theorem.
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dRdRdRdRdR

dLdLdLdLdL

dLT,M→0

dLT

M

R

dVL,dΩ

Figure 7.2: Incremental volume dVL,dΩ = dΩ ·R2 · dL at the solid
angle dΩ = dϑ · sin2 ϑ ·dϕ (black). The upper grey shell has the
solid angle dΩ = 4π and the volume dVL = 4π · R2 · dL. The
incremental volume dVL,dΩ is in that upper grey shell.

7.2 A mass causes additional volume

Idea: We compare a shell SM in the isotropic vicinity of a
nonzero mass M with the corresponding shell SM→0 in zero
mass limit. Thereby, we realize that the shell SM has a larger
volume than the shell SM→0, as a consequence of curvature.
Accordingly, the mass M causes additional volume δV .

That additional volume δV has the corresponding dark en-
ergy δEvol = δV · uvol, see e. g. Huterer and Turner (1998);
Planck-Collaboration (2020); Workman et al. (2022). This com-
parison is illustrated in Fig. (7.1).

Theorem 10 A mass causes additional volume.

If a mass or dynamic mass M is in an empty environment, and
if M is neither accelerated nor rotating nor charged, and if two
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locations A and B have the same angular coordinates and an
incremental distance dLT (A,B), then the following holds (Fig.
(7.1):

(1) A nonzero M causes nonzero curvature of spacetime accord-
ing to the Schwarzschild metric, SM with a radial coordinate
R.

(2) An observer Alice at a location A can in principle observe
her radial coordinate RA. An observer Bob at a location B
can in principle observe his radial coordinate RB. Alice and
Bob can in principle observe their mutual light-travel distance
dLT (A,B) =: dL, and they can evaluate their mutual radial
distance dR(A,B) = RA − RB =: dR. Hereby, we abbreviate
dR(A,B) by dR and dLT (A,B) by dL.

(3) The increment dL is larger than the increment dR. The
difference δR is caused by the mass M and has the following
amount:

δR = dL− dR = dR ·
(

1

εE
− 1

)
(7.16)

(4) The shell SM with the center at M , the radius R and the
thickness dL (Fig. 7.1) has the following volume dVL:

dVL = 4π ·R2 · dL (7.17)

In the shell, the solid angle

dΩ = dϑ · sin2 ϑ · dϕ (7.18)

is equal to 4π. In a solid angle dΩ, the corresponding part dVL,dΩ

of the volume dVL is as follows (Fig. 7.2):

dVL,dΩ = dΩ ·R2 · dL (7.19)

(5) The shell SM→0 with the center at M , the radius R and the
thickness dR (Fig. 7.1) has the following volume dVR:

dVR = 4π ·R2 · dR (7.20)
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In a solid angle dΩ, the corresponding part dVR,dΩ of the volume
dVR is as follows:

dVR,dΩ = dΩ ·R2 · dR (7.21)

(6) The shell SM has a larger volume than the shell SM→0. The
difference δV is caused by the mass M and has the following
amount:

δV : = dVL − dVR (7.22)

= 4π ·R2 · δR or (7.23)

δV = 4π ·R2 · dR ·
(

1

εE
− 1

)
(7.24)

The corresponding relations in a solid angle dΩ are as follows:

δVdΩ : = dVL,dΩ − dVR,dΩ (7.25)

= dΩ ·R2 · δR or (7.26)

δVdΩ = dΩ ·R2 · dR ·
(

1

εE
− 1

)
(7.27)

The differences δV and δVdΩ are called additional volumes.
The corresponding minuends dVL and dVL,dΩ are named com-
plete volume. The subtrahend dVR is called reference vol-
ume.

(7) The additional volume δV has the following additional
dark energy:

δEvol = δV · uvol (7.28)

Thereby, uvol is the energy density of dark energy. That en-
ergy density is alternatively and usually named dynamic density
of dark energy ρvol := uvol/c

2, see e. g. Planck-Collaboration
(2020); Workman et al. (2022); Hobson et al. (2006).

(8) An additional volume δV or δVdΩ divided by the correspond-
ing complete volume is called relative additional volume εL,
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1 2 3 4 5

0.2

0.4

0.6

R
RS

ε L

Figure 7.3: Relative additional volume εL.

and it can be calculated as follows (Fig. 7.3):

εL : =
δV

dVL
=

δVdΩ

dVL,dΩ
and (7.29)

εL = 1− εE (7.30)

Proof

(1) The Schwarzschild metric is a function of the radial coordi-
nate R, see theorem (9) or Schwarzschild (1916); Hobson et al.
(2006).

(2) Alice and Bob can measure their radial coordinates RA and
RB based on the light-travel distance. For it, they can mea-
sure the circumferential radial coordinate Rcircumferential = U

2π ,
see section (2.6.4.1). Alternatively, Alice and Bob can measure
their radial coordinates with help of the gravitational parallax
distance, see section (2.6.4).

The radial coordinates provide the corresponding radial differ-
ence dR = RA −RB.

Alice and Bob can measure their mutual distance dL by mea-
suring the light-travel distance.
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(3) A nonzero mass M causes a position factor smaller 1, see
theorem (9). The Schwarzschild metric can be expressed by a
line element ds as follows, see e. g. (Landau and Lifschitz, 1971,
Eq. 82.1):

ds2 = −c2dt2ε2
E + dR2/ε2

E +R2dϑ2 +R2 · sin2 ϑ · dϕ2 (7.31)

If the increments dt, dϑ and dϕ are zero, then the incremental
length dL is equal to the line element ds, see e. g. Landau and
Lifschitz (1971):

ds = dL = dR · 1

εE
(7.32)

The above relation implies Eq. (7.16). Thus, a mass or dynamic
mass M causes the additional increment δR according to Eq.
(7.16).

(4) The volume of the shell is the product of the area A of
the surface of the shell multiplied by the thickness dL, as the
thickness is incremental. As there is no change of length in
the angular directions of ϑ and ϕ, the circumference has the
length 2π · R and the area A of the surface is equal to A =
4πR2. Thence, we derive dVL = 4πR2dL. Similarly, we derive
dVL,dΩ = dΩR2dL.

(5) The volume of the shell is the product of the area A = 4πR2

of the surface of the shell multiplied by the thickness dR, as
the thickness is incremental. Thus, we obtain dVR = 4πR2dR.
Similarly, we derive dVR,dΩ = dΩR2dR.

(6) The difference δV = dVL − dVR is derived by inserting Eqs.
(7.16, 7.20, 7.17). Similarly, we derive δVdΩ = dVL,dΩ − dVR,dΩ.

(7) The additional energy δEvol is derived by multiplication of
the additional volume δV with the corresponding energy density
uvol. So we derive δEvol = δV · uvol.
(8) In the relative additional volume εL = δV

dVL
, the definition of
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additional volume δV (Eq. 7.22) provides εL as a function of
dR/dL:

εL = 1− dVR
dVL

= 1− dR

dL
(7.33)

Similarly, we derive:

εL = 1− dVR,dΩ

dVL,dΩ
= 1− dR

dL
(7.34)

The ratio dR/dL is equal to the position factor εE (Eq. 7.32).
Thus, εL as a function of that factor:

εL = 1− εE (7.35)

Altogether, this proves all parts of the theorem.

Corollary 7 Additional volume

(1) Alice and Bob can observe their radii RA and RB. For
instance, they can observe the circumferential radial coordinate
Rcircumferential = U

2π , see section (2.6.4.1). Or they can observe
the gravitational parallax distance dGP , see section (2.6.4).

(2) Thus, Alice and Bob can observe the increments dR and
dL. With it, they can observe the additional volume δV . As a
consequence, the additional volume δV is an element of physical
reality. With it, relative additional volume εL is an element of
physical reality.

(3) Moreover, the energy density of volume uvol can be observed.
So it is an element of physical reality as well.

(4) As a consequence of items (2) and (3), the additional energy
δEvol = uvol · δV can be observed. Thus, it is an element of
physical reality too.
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Figure 7.4: Absolute value of the gravitational field |~G∗| · 2RS
c2 .

7.3 εL provides a gravitational potential

Idea: The relative additional volume εL = 1 − εE(R) is an
element of physical reality (corollary 7). Moreover, εL is a
scalar, and it decreases monotonously, when the distance to
M increases. So, εL might be proportional to a gravitational
potential.

This possibility is analyzed next. Thereby, the precise details
of an exact gravitational potential are derived.

Theorem 11 An exact gravitational potential

If a mass or dynamic mass M is in an empty environment, and
if M is neither accelerated nor rotating nor charged, then the
following holds:

(1) At each radius R > RS, an observer can measure the follow-
ing gravitational field ~G∗ as a function of R, see section (2.6.4)
and (Moore, 2013, Eq. 9.9) (Fig. 7.4):

|~G∗| = G ·M
R2

=
c2

2RS
·
(
RS

R

)2

(7.36)
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Figure 7.5: Gravitational potential ΦL/c
2, according to the

derivative with respect to the light-travel distance dL.

The field is antiparallel to the radial unit vector ~eL (Fig. 7.6):

~G∗ = −G ·M
R2

· ~eL (7.37)

(2) At each location with R ≥ RS, the gravitational potential
ΦL(~R) is equal to the relative additional volume multiplied by
−c2, see Fig. (7.5),

ΦL := −c2εL (7.38)

and the field is the gradient of the potential:

~G∗ = − ∂

∂L
ΦL · ~eL, thence, (7.39)

~G∗ = −gradLΦL or with ~∂L := gradL (7.40)
~G∗ = −~∂LΦL (7.41)

Proof

(1) The gravitational field as a function of R is provided in
THM (2).



7.3. εL PROVIDES A GRAVITATIONAL POTENTIAL 91

(2) In order to confirm the potential

ΦL = −c2εL, (7.42)

we apply the derivative, and we use εL = 1− εE:

− ∂

∂L
ΦL = −c2 ∂

∂L
(1− εE(R)) (7.43)

We apply the chain rule, and we use εE =
√

1− RS
R :

− ∂

∂L
ΦL = −c2 ∂R

∂L︸︷︷︸
εE

∂

∂R

(
1−

√
1− RS

R

)
(7.44)

We evaluate the derivative:

− ∂

∂L
ΦL = −c2εE

1

2εE

−RS

R2
(7.45)

We use the Schwarzschild radius RS = 2GM
c2 , and we identify

the field (Eq. 7.37):

− ∂

∂L
ΦL = c2 1

2

2GM

c2R2
=
GM

R2
= |~G∗| (7.46)

Altogether, this proves all parts of the theorem.
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Figure 7.6: Vectors of the gravitational field.



Chapter 8

Propagation of Additional
Volume

In this chapter, we analyze the propagation of dynamic volume
in the vicinity of a mass M . In particular, we derive the differ-
ential equation, DEQ, for relative additional volume. Moreover,
we analyze plane wave solutions of that DEQ. Furthermore, we
generalize that propagation so that the DEQ does not depend
on the mass M .

observer

L

outward propagation: σout = 1
δ

inward propagation: σout = −1

δ

Figure 8.1: If a portion δ increases its light-travel distance to an
observer, then the portion propagates outwards. In that case, a
corresponding sign function has the value one, σout = 1. If that
distance decreases, then the sign function has the value minus
one, σout = −1.

93
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Definition 8 Unidirectional propagation

(1) If at each location ~R, a propagation takes place in exactly
one direction, then the propagation is called unidirectional
propagation. For instance, the radial propagation in the vicin-
ity of a mass M is unidirectional.

(2) The radial direction has the direction vector ~eL.

(3) If a portion δ increases its light-travel distance to an ob-
server, then the portion propagates outwards, see Fig. (8.1).

(4) If a portion δ decreases its light-travel distance to an ob-
server, then the portion propagates inwards.

(5) For a portion δ propagating relative to an observer, we define
a sign function σout as follows:

If δ propagates outwards, then σout = 1.

If δ propagates inwards, then σout = −1.

Otherwise, the value is σout = 0.

8.1 Relative additional volume

Idea: A portion of relative additional volume has zero rest
mass. Accordingly, such a portion should propagate at the ve-
locity of light, as derived below. We investigate that propaga-
tion in this section.

Theorem 12 Propagation of relative additional volume

If a mass or dynamic mass M is in an empty environment, and
if M is neither accelerated nor rotating nor charged, then the
following holds:

(1) Within natural volume, for a portion of relative additional
volume, the group velocity vg is equal to the velocity of light
vg = c.
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(2) A portion of relative additional volume propagates parallel
or antiparallel to the radial direction vector ~eL.

(3a) A portion of relative additional volume propagates as fol-
lows, see (Figs. 8.1 and 8.2) and DEF (8):

L(τ0 + τ) = L(τ0) + c · τ · σout, thus, (8.1)
∂L

∂τ
= c · σout, with dτ = dt · εE (8.2)

(4a) The unidirectional propagation of a portion of relative
additional volume is driven by the gravitational potential as fol-
lows:

∂

∂L
ΦL = −c2 ∂τ

∂L︸︷︷︸
σout/c

· ∂
∂τ
εL, implied DEQ : (8.3)

∂

∂L
ΦL = −c · σout ·

∂

∂τ
εL, or (8.4)

|~G∗| = |c · ∂
∂τ
εL|, (8.5)

with radial direction ~eL of propagation (8.6)

(3b) In parts (3a) and (4a), we treated portions of relative ad-
ditional volume. In parts (3b) and (4b), correspondingly, we
treated phases of relative additional volume.

A phase of a harmonic wave of relative additional volume prop-
agates as follows, see (Figs. 8.1 and 8.2) and DEF (8):

L(τ0 + τ) = L(τ0) + vp · τ · σout, thus, (8.7)

∂L

∂τ
= vp · σout, with dτ = dt · εE (8.8)

(4b) In the unidirectional propagation of relative additional vol-
ume, the propagation of the phase of a harmonic wave is driven
by the gravitational potential and characterized by the phase ve-
locity vp as follows (see THM 5, part 12). In general, vp is a
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function of the wave number |~k| as follows:

∂

∂L
ΦL = −c2 ∂τ

∂L︸︷︷︸
σout/vp

· ∂
∂τ
εL, implied DEQ : (8.9)

∂

∂L
ΦL = − c

vp
· c · σout ·

∂

∂τ
εL, or (8.10)

|~G∗| =

∣∣∣∣ cvp · c · ∂∂τ εL
∣∣∣∣ , (8.11)∣∣∣∣1c vpc · ~G∗

∣∣∣∣ =

∣∣∣∣ ∂∂τ εL
∣∣∣∣ , (8.12)

with radial direction ~eL of propagation (8.13)

The gradient of the potential ∂
∂LΦL or the field |~G∗| can cause

a high phase velocity vp. Such high vp can occur especially at
large wavelengths, see THM (5, part (12)).

Correspondingly, the potential and the field can cause a high rate
of relative additional volume ε̇L. Hereby that rate is increased
by the factor

vp
c . Accordingly, there can be a sufficient rate of

relative additional volume ε̇L for a high phase velocity, by which
the relative additional volume εL can propagate.

Using the DEQ (8.10) and the potential ΦL = −c2 ·εL, we derive
the DEQ of relative additional volume:

vp ·
∂

∂L
εL = σout ·

∂

∂τ
εL (8.14)

That DEQ is fully geometric in spacetime. Correspondingly,
that DEQ does not depend on any physical constant such as G, c
or h. Accordingly, the phase velocity vp of a harmonic wave of
volume is not limited.

Proof

(1) A portion of volume can transform at a phase transition to
a mass, according to the Higgs (1964) mechanism, see Carmesin
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Figure 8.2: Propagation of additional volume (black waveform).

(2021a) for an explicit analysis thereof. Such a phase transition
is the only mechanism, by which a portion of volume can achieve
a nonzero rest energy E0. Thus, each portion of natural three-
dimensional volume has zero rest energy E0 = 0.

In SR, the following energy relation holds:

E2 = E2
0 ·

1

1− v2/c2
(8.15)

We solve for v2/c2:

1− E2
0

E2
=

v2

c2
(8.16)

If a portion of volume would have a rest energy, then an observer
could in principle measure his position relative to that portion
(as positions can in principle be determined relative to an object
with rest energy). However, no position relative to a portion of
natural volume can be measured in SR. Thus, a portion of such
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volume has no rest energy E0. As the rest energy E0 is zero,
each portion of natural three-dimensional additional volume has
the velocity v = c within natural three-dimensional volume, see
Eq. (8.16).

(2) A portion of additional volume propagates parallel or an-
tiparallel to the radial direction. As a portion of additional
volume propagates at the velocity v = c, see part (1), the light-
travel distance L(τ0) increases by c · σout · τ , during a time τ .
Thus the propagation is described by Eq. (8.1).

(3a) We use the potential (Eq. 7.38), and we apply the deriva-
tive:

∂

∂L
ΦL = −c2 ∂

∂L
εL (8.17)

we apply the chain rule:

∂

∂L
ΦL = −c2 ∂τ

∂L︸︷︷︸
σout/c

∂

∂τ
εL (8.18)

Altogether, this proves all parts of the theorem. Thereby, the
parts (3b) and (4b) are shown in a similarly to parts (3a) and
(4a).

Corollary 8 Interpretation of phase velocity of volume

(1) In a monochromatic harmonic electromagnetic wave in vol-
ume (or vacuum), the energy density propagates at the phase
velocity, see e. g. (Landau and Lifschitz, 1971, section 31).
According to SR, energy does not propagate faster than c. Cor-
respondingly, the phase velocity of classical light in volume (or
vacuum) is limited by c = 1√

ε0·µ0
, with µ0 = 4π · 10−7 N

A2 . In the

quantum theory of the electromagnetic field, the quantum prop-
erties are added to the properties of classical electromagnetic
waves, see e. g. (Ballentine, 1998, section 19), (Landau and
Lifschitz, 1982, chapter I).
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(2) In contrast, a possible harmonic rate gravity wave of volume
(C. 8) has zero energy density u and momentum density u/c =
p/V (C. 6, 11). Accordingly, the phase velocity vp of volume is
not limited by the velocity c of light in volume (or vacuum).

8.2 Plane waves

Idea: The gradient of the potential represents a driving force
for the relative additional volume, see THM (12, part 3) and
Fig. (8.3). Thus, the DEQ of unidirectional propagation of
relative additional volume (Eq. 8.5) might have solutions rep-
resenting plane waves. We investigate that possibility in this
section.

Theorem 13 Plane waves of relative additional volume

If a mass or dynamic mass M is in an empty environment, and
if M is neither accelerated nor rotating nor charged, then the
following holds:

(1) The following plane waves are solutions of the DEQ ∂
∂LΦL =

−c ·σout · ∂∂τ εL (Eq. 8.4) of relative additional volume (Fig. 8.2):

εL,ω = ε̂L,ω · exp(i · ω · τ − i · k · L) and (8.19)

ΦL,ω = Φ̂L,ω · exp(i · ω · τ − i · k · L), with (8.20)

direction ~eL of unidirectional propagation (8.21)

σout = 1 (8.22)

(2) Inserting these waves into the DEQ yields the following re-
lations:

The amplitudes are summarized as follows:

Φ̂L,ω = c2 · ε̂L,ω (8.23)

These plane waves are summarized as follows:

ΦL,ω = c2 · εL,ω (8.24)
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The DEQ of these plane waves propagating outwards are sum-
marized as follows:

−c ∂
∂L

εL,ω =
∂

∂τ
εL,ω (8.25)

(3) All finite, discrete infinite or continuously infinite suffi-
ciently converging linear combinations are also solutions of the
DEQ in part (2). Thus, even non-periodic solutions are in-
cluded. Accordingly, the only particular property of these so-
lutions is the propagation in the positive direction of the unit
vector ~eL:.

−c ∂
∂L

εL =
∂

∂τ
εL, or (8.26)

− ∂

∂L
ΦL = c · ∂

∂τ
εL, with (8.27)

direction vector ~eL of propagation (8.28)

In vector notation and in operator notation of the derivatives,
the DEQ is as follows:

−c| · ~∂LεL| = ∂τεL, or (8.29)

−|~∂LΦL| = c · ∂τεL with (8.30)

εL = εL(τ, ~L) and ΦL = ΦL(τ, ~L) (8.31)

Waves of additional volume, as well as waves of volume in
general, have been called rate gravity waves, RGW, see e.
g. Carmesin (2021d,a, 2022d,a).

Proof

(1) We insert the proposed solutions in Eq. (8.20) into the DEQ
(Eq. 8.4) ∂

∂LΦL = −c · σout · ∂∂τ εL of relative additional volume:

∂

∂τ
εL,ω = iω · ε̂L,ω · exp(i · ω · τ − i · k · L) and (8.32)

∂

∂L
ΦL,ω = −i · k · Φ̂L,ω · exp(i · ω · τ − i · k · L) (8.33)
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Figure 8.3: Plane wave of relative additional volume εL (dot-
ted) and scaled gradient of gravitational potential ∂

∂LΦL · −1
c2·k

(dashed). The scaled gradient of the potential is the driving
force for the relative additional volume.

So we derive:

−c · i · ω · ε̂L,ω · exp(i · ω · τ − i · k · L) (8.34)

= −i · k · Φ̂L,ω · exp(i · ω · τ − i · k · L) (8.35)

The above Eq. implies:

c · ω · ε̂L,ω = k · Φ̂L,ω (8.36)

With it, the relation c = ω
k implies:

c2 · ε̂L,ω = Φ̂L,ω (8.37)

(2) We insert Eq. (8.37) into Eq. (8.20), and we compare with
Eq. (8.19). So we derive the relation:

c2 · εL,ω = ΦL,ω (8.38)

We insert Eq. (8.38) into the DEQ (Eq. 8.5). So we derive the
DEQ in (8.25).
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(3) Part (3) is a consequence of the Fourier transform, Teschl
(2014) or Ballentine (1998) or Sakurai and Napolitano (1994).

Altogether, this proves all parts of the theorem.

Corollary 9 Wave packets

(1) A propagating portion can be described as a wave packet. For
instance, at a propagation in a direction ~k, a one-dimensional
analysis is appropriate: A wave packet can be described as a lin-
ear combination of wave vectors, (Scheck, 2013, section 1.3.1):

εL(t, x) = ε̂L

∫ ∞
−∞

dk√
2π
ε̃L(k) exp(iωt− ikx) (8.39)

A wave packet has a central wave number k0. With it, a wave
number k can be expressed as follows:

k · x = k0 · x+ (k − k0) · x (8.40)

As the circular frequency ω is a function of the wave number k,
it can be described relative to ω(k0) = ω0:

ω(k)=̇ω0 +
∂ω

∂k
|k0
· (k − k0) (8.41)

With it, the wave in Eq. is as follows:

εL(t, x) = ε̂L exp(iω0t− ik0x)· (8.42)

·
∫ ∞
−∞

dk√
2π
ε̃L(k) exp

(
i
∂ω

∂k
|k0
· (k − k0)t− i(k − k0)x

)
(8.43)

In the large bracket, i(k − k0) is factorized:

εL(t, x) = ε̂L exp(iω0t− ik0x)· (8.44)

·
∫ ∞
−∞

dk√
2π
ε̃L(k) exp

(
i(k − k0)

[
∂ω

∂k
|k0
· t− x

])
(8.45)

The integral represents the envelope of the packet. It takes its
maximum, if the integrand does not oscillate, as oscillation di-
minishes the integral. Thus, the rectangular bracket is zero at
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the maximum. Hence, the derivative represents the velocity vg
of the wave packet:

maximum at

[
∂ω

∂k
|k0
· t− x

]
= 0 (8.46)

∂ω

∂k
|k0
· t = x = vg · t (8.47)

(2) A wave packet of volume propagates at v = c, according to
SR.

(3) In a harmonic wave of volume, the phase cannot be used for
a determination of an absolute position. Accordingly, SR does
not pose a restriction to the phase velocity of a harmonic wave
of volume.

8.3 Invariant and generalized dynamics

Idea: Equation (8.5) provides the rate of change of relative
additional volume ∂

∂τ εL as a function of the gravitational field
~G∗. That field can be measured (chapter 2) in a manner inde-
pendent of a mass. For it, an effective mass is used (chapter
2). Thus, Eq. (8.5) generalizes the dynamics of ∂

∂τ εL so that no
mass is necessary.

Moreover, we analyze a possible Lorentz invariance of the
dynamics described by that equation (8.5). For it, we provide
definitions and a summarizing corollary first.

Definition 9 Four-vector and four-scalar

(1) The rate gravity vector, RGVL, a four-vector, is the
following combination of the rate ∂

∂τ εL and of the gravitational

field ~G∗:
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RGVL =


c ∂∂τ εL
G∗x
G∗y
G∗z

 (8.48)

(2) In a relativistic scalar product of two four-vectors, we apply
the following common sign convention, see e. g. Moore (2013);
Straumann (2013):

(ηik) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (8.49)

With it, the relativistic scalar product of two four-vectors ~a =
a0

a1

a2

a3

 and ~b =


b0

b1

b2

b3

 is as follows, see e. g. (Landau and

Lifschitz, 1971, § 6) or Moore (2013); Straumann (2013):

(~a|~b) =
3∑
i=0

3∑
k=0

ai · ηik · bk (8.50)

(3) The rate gravity scalar, RGSL is the relativistic scalar
product of the rate gravity four-vector RGVL with itself.

(4) The slope four-vector, SFVL expresses the field in the
RGVL by the potential, see e. g. (Carmesin, 2021d, section
5.2.1):

SFVL =


c ∂∂τ εL
− ∂
∂L1

ΦL

− ∂
∂L2

ΦL

− ∂
∂L3

ΦL

 (8.51)
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(5) The slope four-scalar, SFSL is the relativistic scalar prod-
uct of the slope four-vector SFVL with itself.

Corollary 10 Four-vectors

(1) A scalar product in four-dimensional spacetime is invariant
with respect to any rotation of the four-dimensional coordinate
system, including Lorentz transformations, see e. g. (Landau
and Lifschitz, 1971, § 6) or Carmesin (1996).

(2) A four-scalar is called a Lorentz invariant or a Lorentz
scalar.

Theorem 14 Invariant and generalized dynamics

In natural volume and at an effective mass or mass, the follow-
ing holds:

(1a) The dynamic equation (8.5) of relative additional volume
implies the rate gravity scalar:

0 = −c2 ·
(
∂

∂τ
εL

)2

+ (G∗x)
2 + (G∗y)

2 + (G∗z)
2 = RGSL (8.52)

The above equation is an implied dynamic equation of relative
additional volume.

(1b) In the implied dynamic equation (8.52) of relative addi-
tional volume, the information about the sign σout is lost.

(1c) The implied dynamic equation (8.52) of relative additional
volume is invariant with respect to Lorentz transformations.

(1d) The rate gravity scalar RGSL is a function of the field and
of the relative additional volume εL. Thus, the implied dynamic
equation of relative additional volume is generalized so that the
implied dynamics does neither depend on the mass M nor on
the radius R.

(2) If the gravitational field in the RGVL is expressed by deriva-
tives of the potential, then the slope four-vector SFVL is ob-
tained:
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SFVL =


c ∂∂τ εL
− ∂
∂L1

ΦL

− ∂
∂L2

ΦL

− ∂
∂L3

ΦL

 =


c ∂∂τ εL
G∗x
G∗y
G∗z

 = RGVL (8.53)

(3a) The scalar product of the SFVL with itself provides the
implied dynamic equation (8.52) as a function of the potential
or of the slope four-scalar, SFSL:

0 = SFSL = −c2 ·
(
∂

∂τ
εL

)2

+

j=3∑
j=1

(
∂

∂Lj
ΦL

)2

(8.54)

(3b) In the implied dynamic equation (8.54) of relative addi-
tional volume, the information about the sign σout is lost.

(3c) The implied dynamic equation (8.54) of relative additional
volume is invariant with respect to Lorentz transformations.

(3d) The SFSL is a function of the potential ΦL and of rela-
tive additional volume εL. Thus, the implied dynamic equation
(8.54) of relative additional volume is generalized so that the
implied dynamics does neither depend on the mass M nor on
the radius R.

Proof

(1a) The square of the dynamic equation (8.5) is as follows:

(~G∗)2 = c2 ·
(
∂

∂τ
εL

)2

(8.55)

Subtraction of c2 ·
(
∂
∂τ εL

)2
implies:

0 = −c2 ·
(
∂

∂τ
εL

)2

+ (~G∗)2 (8.56)
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The coordinate representation of (~G∗)2 implies the required
equation (8.52).

(1b) The square in Eq. (8.55) implies the loss of information
about the square.

(1c) The RGSL in Eq. (8.52) is the scalar product of the RGVL

with itself, see DEF (9). Thus, it is invariant with respect to
Lorentz transformations, see corollary (10).

(1d) The generalization is founded in part (1d) of the theorem.

(2) The equality of the four-vectors is founded in part (1d) of
the theorem.

(3a-d) The equality of the four-vectors is founded in part (1d)
of the theorem.

Altogether, all parts of the theorem are derived.

Corollary 11 Generalization with respect to mass

At a location without any mass or dynamic mass in its vicinity,
a possible gravitational field can be measured with help of an
effective mass (chapter 2). With that field, the dynamics of εL
can be derived via Eq. (8.52) or (8.4) or (8.5 and 8.6). So the
dynamics do neither depend on a mass M nor on the distance
R to a mass.

Corollary 12 Invariant dynamics

(1) An observer can distinguish a portion propagating outwards
(σout = 1) from a portion propagating inwards (σout = −1), see
Fig. (8.1). As a consequence, the DEQ of the propagation of
relative additional volume depends on that sign function σout,
see Eq. (8.4): ∂

∂LΦL = −c · σout · ∂∂τ εL.

(2) The corresponding Lorentz invariant dynamics is achieved
by application of the square to that DEQ. So the sign function
becomes irrelevant, and the information about the sign is lost.
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Chapter 9

Local Formation of Volume

Idea: A portion δV or δVdΩ of additional volume near a mass
M propagates outwards, see chapter (8) and Fig. (9.1). If that
portion increases during that propagation, then there occurs lo-
cally formed volume, LFV, within that portion. Moreover,
the dynamics at a mass or dynamic mass can be generalized to
the dynamics at an effective mass (section 8.3). In this chapter,
we investigate such possible LFV.

The LFV is described by two essential and different quanti-
ties:

Firstly, the time derivative ∂τεL = ε̇L of the relative addi-
tional volume εL is essential for gravity, curvature of spacetime
and quantum physics.

Secondly, a normalized rate ε̇L (DEF 10) is normalized
similar to the normalization of the derivative Ṙ of scale factor R
in the Hubble rate H = Ṙ

R (compare with Hobson et al. (2006),
Carmesin (2019b), chapter 12). Accordingly, the normalized
rate is essential in the description of the expansion of space
since the Big Bang.

Of course, we compare the normalized LFV with the rate of
the relative additional volume ε̇L.
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dRdRdRdRdR

dLdLdLdLdL

dLT,M→0

dLT

M
R

Figure 9.1: A portion of additional volume δV propagates out-
wards. Thereby, the portion increases. Thus, locally formed
volume, LFV, occurs within that portion of additional volume.

9.1 Normalized LFV

Idea: If a portion δV or δVdΩ of additional volume increases by
an amount δV or δVdΩ during its propagation through a com-
plete volume dVL or dVL,dΩ, then this increase can be observed
in that complete volume. Accordingly, the amount of LFV is
normalized by the corresponding complete volume.

In this section, we investigate such normalized LFV. For it,
we define useful concepts first:

Definition 10 Normalized locally formed volume

(1a) The process of propagation of a portion δV or δVdΩ of ad-
ditional volume (Fig. 9.1) exhibits the following physical quan-
tities:

(1b) The propagation has a time of propagation δτ .

(1c) Propagation has a distance of propagation δL = c · δτ .
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(1d) The propagation takes place in a complete volume of
propagation dVL or dVL,dΩ.

(1e) The propagation exhibits a formed volume δV or δVdΩ.

(2) The increase δVdΩ per time δτ is the rate of LFV in a solid
angle of a shell δVdΩ

δτ .

rateLFV =
δVdΩ

δτ
at dVL,dΩ (9.1)

The whole shell is included as a special case with dΩ = 4π.

(3) The rate of LFV normalized by the corresponding complete
volume is the normalized rate of LFV:

ε̇L =
δVdΩ/δτ

dVL,dΩ
at dVL,dΩ (9.2)

(4a) In the vicinity of a mass or dynamic mass or dynamic
mass M , the Schwarzschild radius RS = 2GM

c2 is an appropriate
unit of length.

(4b) Correspondingly, for relatively large distances RS
R << 1, a

far distance approximation, FDA, is applicable. Hereby, a

k − th order is proportional to the k − th power
(
RS
R

)k
of RS

R .

(5) The rate multiplied by 1
c·dR forms a characteristic func-

tion of LFV fL as a function of R
RS

:

fL

(
R

RS

)
=

∂

∂τ
δV · 1

c · dR
(9.3)

That function provides the sign (and a scaled amount) of the
rate of change of additional volume.

Theorem 15 Law of unidirectional formation of volume

If a mass or dynamic mass M is in an empty environment, and
if M is neither accelerated nor rotating nor charged, then the
following holds:



112 CHAPTER 9. LOCAL FORMATION OF VOLUME

(1) At a distance R = dGP from M , the rate of LFV is as
follows:

rateLFV =
δVdΩ

δτ
= c · dR · fL

(
R

RS

)
with (9.4)

fL

(
R

RS

)
=

2 · dVL
R · dR

·

(
εE − ε2

E −
1

4εE · RRS

)
or (9.5)

fL

(
R

RS

)
= 8π ·R ·

(
1− εE −

1

4ε2
E ·

R
RS

)
(9.6)

(2) Hereby, volume forms in radial direction in a unidirectional
manner.

(2a) The function fL

(
R
RS

)
is illustrated in Fig. (9.2).

(2b) The function fL

(
R
RS

)
has a zero at R

RS
= 1.659 194.

(2c) In the very near vicinity of the Schwarzschild radius, at
R
RS

< 1.659 194, volume is annihilated locally.

(2d) Outside that very near vicinity of the Schwarzschild radius
at R

RS
> 1.659 194, volume is formed locally.

(3a) At a distance R = dGP from M and at leading order in the
FDA, the normalized rate of LFV is as follows:

ε̇L(R) = |~G∗|(R) · 1
c

(9.7)

(3b) The rate of LFV corresponding to part (3a) is as follows:

rateLFV =
dVL
c

G ·M
R2

=
4π · dL ·G ·M

c
(9.8)

At leading order in the FDA, the rate of LFV is constant.

Proof: (1) We analyze the rate in Eq. (9.1):

rateLFV =
δVdΩ

δτ
at dVL,dΩ (9.9)
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Figure 9.2: Characteristic function of LFV: At R
RS

> 1.6952, vol-

ume is formed locally. At R
RS

< 1.6951, in that vicinity of the
Schwarzschild radius, volume is locally annihilated.

The increase of δV is described by the difference:

rateLFV =
δVdΩ(τ0 + δτ)− δVdΩ(τ0)

δτ
(9.10)

As the time of propagation δτ is incremental, we can express
the difference at linear order in δτ :

rateLFV =
δVdΩ(τ0) + ∂

∂τ δVdΩ · δτ − δVdΩ(τ0)

δτ
=
∂VdΩ

∂τ
(9.11)

We analyze the time derivative with help of the chain rule:

rateLFV =
∂

∂τ
δVdΩ =

∂L

∂τ︸︷︷︸
c

· ∂
∂L

δVdΩ (9.12)

We apply the chain rule again:

rateLFV = c · ∂R
∂L︸︷︷︸
εE

· ∂
∂R

δVdΩ (9.13)
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We use THM (10):

rateLFV = c · εE
∂

∂R

(
4πR2dR

(
1

εE
− 1

))
or (9.14)

rateLFV = c · εE · 4π · dR
∂

∂R

(
R2

(
1

εE
− 1

))
(9.15)

We evaluate the derivative:

rateLFV = c · εE · 4π · dR · (9.16)(
2R

(
1

εE
− 1

)
+R2 1

−2ε3
E

RS

R2

)
or (9.17)

rateLFV = c · dR · fL
(
R

RS

)
with (9.18)

fL

(
R

RS

)
= 8π ·R ·

(
1− εE −

1

4ε2
E ·

R
RS

)
(9.19)

With it, dVL = 4πR2dL = 4πR2dR/εE implies the following
form of the characteristic function of LFV:

fL

(
R

RS

)
=

2 · dVL
R · dR

·

(
εE − ε2

E −
1

4εE · RRS

)
(9.20)

(2a) The characteristic function of LFV is plotted in Fig. (9.2).

(2b) The zero R
RS

= 1.659 194 of the characteristic function of
LFV has been evaluated numerically.

(2c) The characteristic function of LFV provides the sign of the
normalized rate of formation of LFV. At R

RS
< 1.659 194, that

sign is negative, so that volume is annihilated.

(2d) At R
RS

> 1.659 194, that sign is positive, so LFV is formed.

(3a) We apply the characteristic function of LFV (Eq. 9.5) to
the rate (Eq. 9.4):

rateLFV = c · 2 · dVL
R

·

(
εE − ε2

E −
1

4εE · RRS

)
(9.21)
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In order to derive the normalized rate (DEF 10), we divide
by the complete volume dVL. Additionally, we factorize the
position factor εE:

ε̇L = c · 2

R
· εE ·

(
1− εE −

1

4ε2
E ·

R
RS

)
(9.22)

At leading order in the FDA, the above square ε2
E is one, as that

square is multiplied by R
RS

. Moreover, at leading order in the

FDA, the position factor is as follows εE =
√

1− RS
R =̇1 − RS

2R .

So the normalized rate is as follows:

ε̇L = c · 2

R
· εE ·

(
1− 1 +

RS

2R
− 1

4

RS

R

)
or (9.23)

ε̇L = c · 2

R
· εE ·

1

4
· RS

R
(9.24)

At leading order in the FDA, the above position factor εE is
one, as that factor is multiplied by R

RS
:

ε̇L = c · 1
2
· RS

R2
(9.25)

The definition of the Schwarzschild radius RS = 2GM
c2 implies

the following:

ε̇L =
1

c
· G ·M

R2
(9.26)

We identify the field, in order to derive Eq. (9.7):

ε̇L =
1

c
· |~G∗| (9.27)

We multiply Eq. (9.26) by the complete volume dVL, in order
to derive Eq. (9.8).

Altogether, this proves all parts of the theorem.
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Corollary 13 Local formation of volume by a field

(1) At the leading order in the FDA, the normalized rate of LFV
in Eq. (9.7) is caused by a mass M :

ε̇L(R) = |~G∗|(R) · 1
c

(9.28)

Moreover, at a radius R, that LFV is caused by the gravita-
tional field ~G∗ at that radius. Thus, the formation of volume is
completely local.

(2) Furthermore, the gravitational field ~G∗ is formed by the gra-
dient of the additional volume that did already form, see THM
(11). Thus, the gravitational field ~G∗ and the additional vol-
ume cause each other. This constitutes a situation of positive
feedback.

(3) Indeed, the positive feedback in part (2) causes a diverging
amount of additional volume, as the same amount of volume of
LFV forms in each shell, see Eq. (15). That infinite amount of
volume is the same volume that causes the expansion of space
since the Big Bang, see THM (6). Thus, the locally formed
volume LFV explains the globally formed volume, GFV.

(4) In fact, the diverging amount of LFV does not cause any
problem, as it explains the GFV that causes the expansion of
space. In particular, the diverging amount of LFV does not re-
quire any renormalization. In contrast, some theories of quan-
tum gravity require a renormalization, or they are even not
renormalizable, see e. g. Prinz (2022).

9.2 Formation of εL near a mass M

Idea: In the vicinity of a mass, portions of additional vol-
ume δV exhibit a radial pattern of propagation, see Fig. (9.1).
Thereby, there could occur a nonzero rate of formation of the
corresponding portions of relative additional volume εL. That
possibility is analyzed in this section.
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Theorem 16 LFV of εL

If a mass or dynamic mass M is in an empty environment, and
if M is neither accelerated nor rotating nor charged, then the
following holds:

(1) If a portion of relative additional volume propagates during
a time δτ a distance δL = c · δτ , then the rate of relative
additional volume

rateεL =
δεL
δτ

: =
εL(τ0 + δτ)− εL(τ0)

δτ
(9.29)

is as follows:

δεL
δτ

=
∂

∂τ
εL(R) = ε̇L(R) (9.30)

(2) At a distance R = dGP from M , the rate of change of a
portion of relative additional volume is as follows:

δεL
δτ

=
∂

∂τ
εL(R) = −1

c

G ·M
R2

= −1

c
|~G∗|(R) (9.31)

Proof

(1) We analyze the rate in Eq. (9.29):

δεL
δτ

=
εL(τ0 + δτ)− εL(τ0)

δτ
(9.32)

As the time of propagation δτ is incremental, we can express
the difference at linear order in δτ :

δεL
δτ

=
εL(τ0) + ∂

∂τ εL · δτ − εL(τ0)

δτ
(9.33)

Evaluation of the above term yields the following:

δεL
δτ

=
∂

∂τ
εL in the limit δτ → 0 (9.34)
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(2) We analyze the time derivative with help of the chain rule:

∂

∂τ
εL(R) =

∂L

∂τ︸︷︷︸
c

· ∂
∂L

εL(R) (9.35)

We apply the chain rule again:

∂

∂τ
εL(R) = c · ∂R

∂L︸︷︷︸
εE

· ∂
∂R

εL︸︷︷︸
1−εE

(9.36)

We evaluate the derivative:

∂

∂τ
εL = c · εE ·

∂

∂R

(
1−

√
1− RS

R

)
or (9.37)

∂

∂τ
εL = c · εE ·

1

2
√

1− RS
R

· −RS

R2
or (9.38)

∂

∂τ
εL = c · −2GM

2R2c2
=
−1

c
· GM
R2

= −|
~G∗|(R)

c
(9.39)

Using part (1), we derive the rate:

δεL
δτ

(R) = −|
~G∗|(R)

c
(9.40)

Altogether, this proves all parts of the theorem.

Corollary 14 Rate of relative additional volume

(1) In the FDA, rateεL = − |~G
∗|
c is equal to minus one multiplied

by the normalized rate of LFV, ε̇L = |~G∗|
c . Thus, the squares of

these rates are equal:

(ε̇L(R))2 = (ε̇L(R))2 (9.41)

(2) In the FDA, the rateεL of relative additional volume is the
difference of the normalized rate of LFV, ε̇L, and an effective
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rate of the complete volume ratedVL,dΩ
:

δεL
δτ

=
∂

∂τ

δVdΩ

dVL,dΩ
(9.42)

Evaluation of the derivative yields:

δεL
δτ

= ε̇L − εL ·
∂
∂τ dVL,dΩ

dVL,dΩ︸ ︷︷ ︸
=:ratedVL,dΩ

(9.43)

We apply Eqs. (9.40 and 9.7):

δεL
δτ︸︷︷︸

−|~G∗|/c

= ε̇L︸︷︷︸
|~G∗|/c

− ratedVL,dΩ︸ ︷︷ ︸
see below

(9.44)

As a consequence, the ratedVL,dΩ
is equal to 2|~G∗|/c.

(3) In the present radial propagation of additional volume, δεL
δτ is

negative, as the change of the volume dVL,dΩ in the denominator
is larger than the increase of δVdΩ in the numerator. In contrast,
in ε̇L, the denominator is normalized and constant.

9.3 Invariant and generalized LFV

Idea: The equation (9.40) of LFV of relative additional volume,
δεL
δτ = − |~G

∗|
c as well as the rate of LFV in Eq. (9.7), ε̇L = |~G∗| · 1

c

can be transformed to a Lorentz scalar. Moreover, both rates
are generalized, as they do no longer depend on M . In contrast,
the rates depend on the field ~G∗ only.

Theorem 17 Invariant and generalized LFV

In natural volume, the following holds:

(1a) The dynamic equation (9.40) of the LFV of relative addi-
tional volume implies the following rate gravity scalar of LFV
of εL:
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0 = −c2 ·
(
δεL
δτ

)2

+ (G∗x)
2 + (G∗y)

2 + (G∗z)
2 = RGSεL (9.45)

The above equation is an implied dynamic equation of the LFV
of relative additional volume.

(1b) In the implied dynamic equation (9.45), the information
about the sign is lost.

(1c) The implied dynamic equation (9.45) is invariant with re-
spect to Lorentz transformations.

(1d) The rate gravity scalar RGSεL is a function of the field and
of the relative additional volume εL. Thus, the implied dynamic
equation is generalized so that the implied dynamics does neither
depend on the mass M nor on the radius R.

(2a) The dynamic equation (9.7) of the LFV implies the follow-
ing rate gravity scalar of LFV:

0=̇− c2 · (ε̇L)2 + (G∗x)
2 + (G∗y)

2 + (G∗z)
2 = RGSε̇L (9.46)

The above equation is an implied dynamic equation of the LFV.

(2b) In the implied dynamic equation (9.46), the information
about the sign is lost.

(2c) The implied dynamic equation (9.46) is invariant with re-
spect to Lorentz transformations.

(2d) The rate gravity scalar RGSLFV is a function of the field
and of the additional volume δVdΩ. Thus, the implied dynamic
equation is generalized so that the implied dynamics does neither
depend on the mass M nor on the radius R.

Proof: The proof is analogous to that of THM (14).



Chapter 10

Geometry of the Change of
Volume

Idea of change of a cube: The locally formed volume, LFV,
in THM (15) is formed in a unidirectional manner. The expan-
sion of space takes place in an isotropic manner, THM (7).

In this section, we describe isotropic, unidirectional as well as
anisotropic changes of volume in a systematic manner. Geomet-
rically, we analyze changes of a cube in Fig. (12.1). Hereby, we
mark the edges of the cube by drj, while we mark the changed
edges by dr′j, and we denote the differences by δrj = dr′j − drj.
Algebraically, we describe changes of volume with tensors.

Idea of tensors: If a mass or an effective mass can be measured
at a region, then the two maps in Fig. (7.1) can be drawn. Thus,
gravity causes incremental changes of a volume dV .

Similarly, deformations in a solid body represent an incre-
mental change. These changes are described by the strain ten-
sor, see e. g. (Sommerfeld, 1978, Eq. 12) or (Landau and
Lifschitz, 1975, Eq. 1.5). Thereby, the strain tensor is sym-
metric. Accordingly, we use the strain tensor as well as the
corresponding antisymmetric tensor, in order to describe addi-
tional volume, the formation of volume and changes of volume.

Organization: Firstly, we analyze additional volume, see sec-
tions (10.1, 10.2). Secondly, we investigate LFV as shown in
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dz

dz

dAz

dV = dAz · dz

δVz = dAz · δz

dz′(τ + δτ)
c

+δτ

δz(τ)

δz

Figure 10.1: Unidirectional formation of volume: Additional vol-
ume propagates in z-direction at v = c. There is additional
volume δVz. Thereby, during a time δt, a portion of volume
δVz = δz · dAz forms.

Fig. (10.1). Thereby, the additional or formed volume is sepa-
rated into three Cartesian components, see Figs. (12.1, 10.1).
Hereby, we describe higher order terms of increments drj as well
as δrj by the factor (1 +O(drj)).

10.1 Volume tensor

For instance, additional volume in the z-direction is described
in terms of increments (see e. g. the calculus of Leibniz (1684)
or differential forms Flanders (1989)) as follows: Basically, we
consider the cubic volume dV with a height dz and a surface
dAz orthogonal to dz in Fig. (12.1):

dV = dAz · dz (10.1)

The upper surface dAz is shifted by an increment δz. Hereby,
the increment δz is a function of z. In linear order in dz, the
increment δz is as follows:

δz =
∂dz′

∂z
· dz · (1 +O(dz)) (10.2)

Hereby, the partial derivative is an element of a tensor, called
volume - tensor. It is similar to the strain tensor, see (Som-
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merfeld, 1978, Eq. 11) or (Landau and Lifschitz, 1975, Eq. 1.8).
The diagonal element in direction z is named εzz:

εzz =
∂dz′

∂z
=
∂δz

∂z
=
δz

dz′
· (1 +O(dz)) (10.3)

Hereby, dz′ and δz = dz′ − dz are regarded as differentiable
functions of z. Thus, the corresponding additional volume is
as follows:

δVz = dAz · δz = dAz · dz · εzz · (1 +O(dz)) (10.4)

= dV · εzz · (1 +O(dz)) (10.5)

By definition, the unidirectional normalized additional
volume in direction z is the additional volume δVz divided by
the complete volume dVL = dAz · dz′:

δVz
dVL

=
dAz · δz
dAz · dz′

=
δz

dz′
= εzz · (1 +O(dz)) with (10.6)

dz′ = dz + δz (10.7)

In the present case of the expansion of space since the Big Bang,
the unidirectional normalized additional volume of the other
two Cartesian directions occurs in addition:

δVx
dVL

=
dAx · δx
dAx · dx′

=
δx

dx′
= εxx · (1 +O(dx)) with (10.8)

dx′ = dx+ δx and εxx =
∂dx′

∂x
=
∂δx

∂x
(10.9)

δVy
dVL

=
dAy · δy
dAy · dy′

=
δy

dy′
= εyy · (1 +O(dy)) with(10.10)

dy′ = dy + δy and εyy =
∂dy′

∂y
=
∂δy

∂y
(10.11)

We call the sum of the above three components poly - direc-
tional relative additional volume δV

dVL
:

ε̇L,poly =
δV

dVL
= Σ3

j=1

δVj
dVL

= Σ3
j=1 εjj · (1 +O(drj)) (10.12)
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dy

dAy

dV = dAy · dy δVy = 0 = δV

y δx

Figure 10.2: Change of a cube. At the height dy, the cross section
dAy is shifted by δx(dy), with δx(dy) = εxy · dy. As the height
dy can be at any coordinate y, the above relation is generalized
as follows: δx(y) = εxy · y.

Thereby, the three summands could be equal. In that case, we
call it isotropic relative additional volume δV

dVL
:

ε̇L,iso =
δV

dVL
= Σ3

j=1

δVj
dVL

= Σ3
j=1 εjj · (1 +O(drj)) if (10.13)

δV1

dVL
=
δV2

dVL
=
δV3

dVL
(10.14)

10.2 Non-diagonal elements

Idea: In order to understand the exceptional role of diagonal
elements for the formation of additional volume, we analyze
non-diagonal elements.

For it, we consider non-diagonal elements εij of the volume - ten-
sor, with i 6= j. For instance, at each height dy, the cross section
dAy is shifted by an increment δx, see Fig. (10.2). Thereby, the
increment is the product of dy and a factor εxy:

δx = εxy · dy · (1 +O(dy)) with (10.15)

εxy =
∂δx

∂y
=
δx

dy
· (1 +O(dy)) (10.16)
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As the increment dy can be chosen equal to the coordinate y in
Fig. (10.2), there occurs a corresponding shift at each y:

δx(y) = εxy · y · (1 +O(dy)) (10.17)

Thus, the element εxy represents a shear of the volume dV . A
shear of a cube does not change the volume, see Fig. (10.2).
Similarly, the volume of a solid body is changed by diagonal
elements of the strain tensor only, see (Sommerfeld, 1978, Eqs.
11, 18, 20) or (Landau and Lifschitz, 1975, Eq. 1.6).

Linear change of a cube: The changes of an incremental cube
at linear order in drj are described by the diagonal and non-
diagonal elements of the volume - tensor. These are described
in a uniform manner as follows:

εij =
∂δri
∂rj

=
δri
dr′j
· (1 +O(drj)) (10.18)

With it, the incremental change of volume is described as fol-
lows:

δri =
∑
j

εij · dr′j · (1 +O(drj)) (10.19)

For instance, non-diagonal elements of the volume - tensor occur
in a gravitational wave, see e. g. Einstein (1916), Landau
and Lifschitz (1971), Abbott (2016) or Carmesin (2021d). We
summarize our findings:

Definition 11 volume - tensor

If an observable cube experiences an observable change, then the
amount of volume in that cube changes correspondingly. That
change is described by a volume - tensor as follows, see Fig.
(12.1). Firstly, Cartesian coordinates rj parallel to the edges of
the cube with length drj are used, without loss of generality.
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(1) If an edge drj of the cube changes to a length dr′j, then
change of length is as follows:

δrj = dr′j − drj =
∂δrj
∂rj
· drj · (1 +O(drj)) (10.20)

Thereby, δrj is regarded as a differentiable function of rj, and
the corresponding element of the volume - tensor is as follows:

εjj =
∂dr′j
∂rj

=
∂δrj
∂rj

=
δrj
drj
· (1 +O(drj)) (10.21)

(2) If dAj is the surface of the cube orthogonal to the edge drj,
then the change δrj provides the following unidirectional ad-
ditional volume:

δVj = δrj · dAj (10.22)

That change of volume divided by the complete volume dVL =
dr′j ·dAj is called unidirectional normalized additional vol-
ume in direction rj:

δVj
dVL

=
δrj · dAj

dr′j · dAj
=
δrj
dr′j

(10.23)

(3) If the cube changes in an isotropic manner, then three Carte-
sian changes of length δrj are equal, and the isotropic addi-
tional volume δV is the sum of the three unidirectional addi-
tional volumes in part (2):

δV =
3∑
j=1

δVj (10.24)

The ratio of δV and the complete volume dVL =
∑

j dr
′
j · dAj is

the isotropic normalized additional volume:

εV : =
δV

dVL
=

δV∑
j dr

′
j · dAj

if dr′i/dri = dr′j/drj(10.25)
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(4) The elements of the volume - tensor are derivatives:

εij =
∂δri
∂rj

(10.26)

An incremental change δri is described as follows:

δri =
∑
j

εij · drj (10.27)

Proposition 2 volume - tensor

(1) If a mass or effective mass can be observed, then the el-
ements of the volume - tensor can be measured by evaluating
corresponding differences between observed gravitational paral-
lax distance dGP and light-travel distances dLT .

(2) At leading order, the unidirectional normalized additional
volume is equal to the corresponding diagonal element of the
volume - tensor:

δVj
dVL

= εjj · (1 +O(drj)) =
δrj · dAj

dr′j · dAj
=
δrj
dr′j

(10.28)

(3) At leading order, the isotropic normalized additional volume
is the sum of the diagonal elements of the three equal diagonal
elements of the volume - tensor:

εV =
3∑
j=1

εjj · (1 +O(drj)) = 3ε11(1 +O(drj)) (10.29)

(4) A non-diagonal element of the volume - tensor εij with i 6= j
does not cause any difference of the volume.
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10.3 Rates for LFV and GFV

In this section, we apply the time derivative to Eq. (10.29):

∂tεV =
3∑
j=1

∂tεjj · (1 +O(drj)) or (10.30)

ε̇V =
3∑
j=1

ε̇jj · (1 +O(drj)) or (10.31)

ε̇V = 3 · ε̇11 · (1 +O(drj)) with (10.32)

ε̇V = ∂tεV and ε̇jj = ∂tεjj (10.33)

We summarize our findings (Fig. 12.1):

Definition 12 Rates of formation of volume

(1) The time derivative of the isotropic normalized additional
volume εV is called rate of isotropic normalized additional
volume:

ε̇V = ∂tεV (10.34)

(2) The time derivative of the unidirectional normalized addi-
tional volume εjj is called rate of unidirectional normalized
additional volume:

ε̇jj = ∂tεjj (10.35)

Proposition 3 Rates of formation of volume

(1) The rate of isotropic normalized additional volume is the
sum of the rates of unidirectional normalized additional volume
as follows:

ε̇V =
3∑
j=1

ε̇jj · (1 +O(drj)) (10.36)
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In the limit drj to zero, the above relation becomes exact:

ε̇V = Σ3
j=1ε̇jj, in the limit drj → 0 (10.37)

(2) If a perspective of an observer is included, then each rate ε̇jj
of unidirectional normalized additional volume is multiplied by
a corresponding factors σout,j. In that case, the above relations
have the following form:

ε̇V =
3∑
j=1

ε̇jj · σout,j · (1 +O(drj)) (10.38)

ε̇V = Σ3
j=1ε̇jj · σout,j, in the limit drj → 0 (10.39)

10.4 No measurement of absolute position

Idea: According to experience and to SR, it is not possible to
measure an absolute position relative to space. This fact has
the following consequence for LFV:

Proposition 4 No position relative to space

If a portion of homogeneous volume δV causes a portion of
formed volume δV , then the following holds:

(1) The location of δV cannot be measured.

(2) The portion of formed volume δV does not take part in a
physical process, that could provide a measurement of the loca-
tion of δV .

(3) The portion of formed volume δV does not take part in a
physical process, that could provide a measurement of a locus
(Hart (1912)) of δV .
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Chapter 11

Formation and Propagation of
Volume

11.1 Linear superposition

Idea: The time evolution of relative additional volume is de-
scribed by the derivative ∂

∂τ εL. In principle, that derivative can
have two different contributions:

Firstly, in the propagation of relative additional volume, the
term ∂

∂τ εL has a contribution, see the DEQ (8.4):

∂

∂τ
εL(R) = −σout

c
· ∂
∂L

ΦL (11.1)

Secondly, a mass M or an effective mass Meff give rise to
LFV which provides a contribution to the term ∂

∂τ εL, see Eq.
(9.31):

δεL
δτ

=
∂

∂τ
εL(R) = −1

c

G ·M
R2

(11.2)

As two volumes can be added, two rates of additional volume
can be added. Moreover, two rates of relative additional vol-
ume can be added, as the two denominators dVdΩ are equal, by
definition.

In this section, the resulting combined dynamics is analyzed.
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Theorem 18 Formation and propagation of volume

In natural volume, the following holds:

(1) A mass or an effective mass or a dynamic mass M give rise
to LFV. That LFV can be described by the relative additional
volume at a distance R and by the following DEQ:

δεL
δτ

=
∂

∂τ
εL(R) = −1

c

G ·M
R2

= −1

c
|G∗M | with (11.3)

|G∗M | =
G ·M
R2

(11.4)

(2) In natural volume, relative additional volume can propagate
according to the following DEQ, THM (12):

∂

∂τ
εL(R) = −σout

c
· ∂
∂L

ΦL (11.5)

(3) If both processes take place at the same time, then the com-
bined process is described by the sum of the rates ∂

∂τ εL in Eqs.
(11.3 and 11.5):

∂

∂τ
εL = −σout

c
· ∂
∂L

ΦL −
1

c

G ·M
R2

(11.6)

(4a) If both processes take place at the same time, then the
combined process is described by the following nonhomogeneous
linear DEQ:(

c · ∂
∂τ
− c2 · σout ·

∂

∂L

)
εL(τ, ~L) = −|~G∗M |(τ, ~L) (11.7)

(4b) The corresponding linear DEQ and its linear differential
operator L̂ are as follows:

L̂ · εL,hom(τ, ~L) = 0 with (11.8)

L̂ = c · ∂
∂τ
− c2 · σout ·

∂

∂L
(11.9)
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A solution εL,hom of that DEQ describes the propagation of

that relative additional volume εL,hom in the (τ, ~L) - system of
curved spacetime.

(4c) The nonhomogeneous linear DEQ is described with the
same linear differential operator L̂:

L̂ · εL,nonhom(τ, ~L) = −|~G∗|(τ, ~L) (11.10)

A solution of that DEQ includes the formation of relative ad-
ditional volume εL,nonhom caused by the local field ~G∗.

(4d) A general solution is the superposition:

εL,general(τ, ~L) = εL,nonhom(τ, ~L) + εL,hom(τ, ~L) (11.11)

That solution describes the formation and propagation of
relative additional volume.

Proof: The proof is provided by the transformations described
within the above theorem. Thereby, we use the fact that a
general solution of a linear DEQ is the sum of a solution of the
nonhomogeneous DEQ and a solution or linear combination of
solutions of the homogeneous DEQ (Ross, 2004, THM 11.13).

Corollary 15 Superposition of additional volume

(1) As volume is an additive geometrical quantity, it provides
the property of linear superposition.

(2) As volume provides the property of linear superposition, the
DEQ of the relative additional volume εL is a linear DEQ.

(3) As relative additional volume εL is formed by a mass or by
an effective mass or by a gravitational field, the DEQ of the
relative additional volume is nonhomogeneous and describes the
process of formation of εL, including the process of formation
of volume δV/δt.
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(4) Correspondingly, the homogeneous DEQ describes the prop-
agation of relative additional volume εL in curved spacetime de-
scribed by the (τ, ~L) - system.

(5) Solutions of the homogeneous and nonhomogeneous DEQ
provide linear superposition, as volume is an additive geometri-
cal and physical quantity.

(6) The linearity of the DEQ of relative additional volume εL is
a necessary condition for an exact and direct derivation of the
Schrödinger Eq. from that DEQ.

(7) The linear DEQ of relative additional volume εL provides
non-linear physical processes. For instance, that DEQ provides
curvature of spacetime. Moreover, that DEQ describes propa-
gation in curved spacetime. Furthermore, that DEQ describes
processes of positive feedback explaining the diverging amount
of formation of volume in the expansion of the universe, see
corollary (13).

Corollary 16 Propagation of gravitational interaction

(1) The DEQ of the formation and propagation of relative ad-
ditional volume εL in THM (18) includes the description of the
formation and propagation of εL.

(2) The relative additional volume εL includes the description
of the gravitational field and potential, see THM (11).

(3) Parts (1) and (2) show that the relative additional volume εL
provides the mechanism of the propagation and formation of the
gravitational field and potential. Thus, the relative additional
volume εL provides the exact mechanism of the propagation and
formation of the gravitational interaction. In this sense, rela-
tive additional volume εL provides the exact mechanism of the
hypothetical graviton, the boson of the gravitational interaction,
see e. g. Blokhintsev and Galperin (1934) or Workman et al.
(2022).
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Corollary 17 Propagation of curvature of spacetime

(1) The DEQ of relative additional volume εL in THM (18)
describes the formation and propagation of εL.

(2) The relative additional volume εL provides the amount of
additional volume corresponding to the Schwarzschild metric, as
it has been derived from the Schwarzschild metric, see chapter
(7).

(3) Parts (1) and (2) show that the relative additional volume
εL provides the mechanism of the propagation and formation of
the curvature of spacetime.

11.2 Energy and momentum

Idea: The propagation and the formation of volume can be
expressed in terms of the gravitational field ~G∗. With it, both
phenomena can be summarized. Moreover, the different per-
spectives described by the factor σout can be summarized with
help of the square σ2

out = 1. Furthermore, the square provides
(~G∗)2, proportional to the energy density, see chapter (6). Al-
together, a four-vector of momentum densities of the additional
volume can be derived, see e. g. (Landau and Lifschitz, 1971,
Eq. 9.13) or (Hobson et al., 2006, section 5.8). It is invariant
with respect to Lorentz transformations.

Theorem 19 Energy and momentum

In natural volume, the following holds:

(1) The formation and propagation of volume in the presence of
a mass M can be described by the DEQ (11.6) and with help of
the gravitational field in terms of the rate gravity scalar RGSL
in Eq. (8.52):

ε̇L = −σout
c
· ∂
∂L

ΦL −
1

c

G ·M
R2

or (11.12)
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ε̇L = −σout
c
|~G∗propagation|~eL +

σout
c
|~G∗formation|~eL or (11.13)

ε̇2
L =

(~G∗)2

c2
or (11.14)

0 = −c2ε̇2
L +

3∑
j=1

(~G∗j)
2 = RGSL with (11.15)

ε̇L =
∂

∂τ
εL (11.16)

~G∗ = ~G∗propagation + ~G∗formation (11.17)

(2) With help of the absolute value of the energy density of the

field |uf,par,grav| = (~G∗)2

8πG (chapter 6), the RGSL in part (1) is
transformed as follows:

0 = −c2ε̇2
L +

3∑
j=1

(~G∗j)
2 = RGSL or (11.18)

0 = − c2

8πG
ε̇2
L +

3∑
j=1

(~G∗j)
2

8πG
=
RGSL
8πG

or (11.19)

0 =
c2

8πG
ε̇2
L − |uf,par,grav| (11.20)

As |uf,par,grav| (|ugrav| for short) is an energy density, the term
c2

8πG ε̇
2
L is an energy density too. As there is no field inherent to

that term, it is a kinetic energy density:

ukin =
c2

8πG
ε̇2
L (11.21)

As additional volume propagates at v = c, its momentum den-
sity is

∑3
j=1

pj
V = p

V = ukin/c. So Eq. (11.19) takes the following
form:
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0 =
ukin
c
− |ugrav|

c
or (11.22)

0 =
3∑
j=1

pj
V
− |ugrav|

c
with (11.23)

ukin,jj = c · pj
V

=
c2

8πG
ε̇2
jj for j ∈ {1, 2, 3} and (11.24)

|ugrav| =
3∑
j=1

(~G∗j)
2

8πG
(11.25)

(3) The kinetic energy density is equal to the sum of momentum
densities density multiplied by c:

ukin =
3∑
j=1

c · pj
V

(11.26)

The kinetic energy density is equal to the sum of diagonal ele-
ments of the kinetic tensor:

ukin =
3∑
j=1

ukin,jj (11.27)

As the above two sums are equal in general, the summands are
equal:

ukin,jj = c · pj
V

=
c2

8πG
ε̇2
jj (11.28)

The Cartesian components correspond to each other:

ukin,jj = c · pj
V

=
(~G∗j)

2

8πG
(11.29)

(4) The following scalar product of a four-vector is introduced:

|ugrav| =
3∑
j=1

(~G∗j)
2

8πG
= c · p0

V
(11.30)
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As a consequence, we derive:

u2
grav = c2 · (p0/V )2 =

3∑
j=1

c2 · (pj/V )2 or (11.31)

0 = −(p0/V )2 +
3∑
j=1

(pj/V )2 (11.32)

This is a relativistic scalar product of an energy momentum
four-vector, EMVkin, of kinetic energy as follows:

EMVkin =


p0

V
p1

V
p2

V
p3

V

 (11.33)

(5) A corresponding energy momentum tensor T ijkin of the kinetic
energy can be formally introduced as follows, see e. g. (Hobson
et al., 2006, p. 178) or (Landau and Lifschitz, 1971, p. 33):
T 00
kin is the kinetic energy density ukin in Eqs. (11.27, 11.28).

The momentum densities
pj
V multiplied by c are the tensor ele-

ments T j0kin = T 0j
kin. The non-diagonal elements are generalized

in a continuous manner:

T ikkin =
c2

8πG


8πG
c2 ukin ε̇2

11 ε̇2
22 ε̇2

33

ε̇2
11 ε̇2

11 ε̇11ε̇22 ε̇11ε̇33

ε̇2
22 ε̇11ε̇22 ε̇2

22 ε̇22ε̇33

ε̇2
33 ε̇33ε̇11 ε̇33ε̇22 ε̇2

33

 (11.34)

The corresponding tensor of the field is as follows (Eq. 11.29):

T ikgrav =
−1

8πG


8πG · |ugrav| (~G∗1)

2 (~G∗2)
2 (~G∗3)

2

(~G∗1)
2 (~G∗1)

2 ~G∗1 ~G
∗
2
~G∗1 ~G

∗
3

(~G∗2)
2 ~G∗2 ~G

∗
1 (~G∗2)

2 ~G∗2 ~G
∗
3

(~G∗3)
2 ~G∗3 ~G

∗
1
~G∗3 ~G

∗
2 (~G∗3)

2

 (11.35)

Proof: The proof is provided by the explained transformations
in the theorem.



Chapter 12

Global Formation of Volume

12.1 Globally formed volume

Idea: In GR, the process of the expansion of space is described
by a uniform scaling. It is a transformation of space. However,
in reality, space is not transformed. Instead, the amount of
volume increases. At what rate does the amount of volume
increase?

In this section, we derive the corresponding rate, at which vol-
ume V increases during the expansion of the universe since the
Big Bang. For it, we express the volume V by the scale factor
R:

V =
4π

3
R3 (12.1)

Using the chain rule, we obtain the derivative:

V̇ = 3Ṙ
V

R
(12.2)

So we derive:
V̇

V
= 3

Ṙ

R
= 3 ·H (12.3)

In order to use the FLE, we apply the square to Eq. (12.3):(
V̇

V

)2

= 9H2 (12.4)
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We insert the FLE, Eq. (5.12) with k = 0:(
V̇

V

)2

= 24πG · ρ (12.5)

We summarize our finding:

Theorem 20 Rate of GFV according to the FLE

If the universe expands according to the FLE, Eq. (5.12), and
if the curvature parameter is zero, k = 0, then the volume in-
creases at the following normalized rate:

δV/δt

dV
:=

V̇

V
= ±

√
24πG · ρ (12.6)

Hereby, the plus-sign corresponds to the case of the expanding
universe, whereas the minus sign describes the scenario of a big
crunch, Goodstein (1997).

Thereby, the normalized rate δV/δt
dV describes the formation of

a volume δV in a volume dV during a time δt.

12.2 LFV can cause GFV

Idea: Masses or dynamic masses mi cause unidirectional for-
mation of LFV in their vicinity. In contrast, isotropic formation
of GFV is observed in the expansion of space. In this section,
we show how the unidirectional LFV caused by many mi can
add up to isotropic GFV.

Theorem 21 LFV causes GFV

In a natural three-dimensional volume, filled with masses or
dynamic masses mi in a homogeneous and isotropic manner,
the following holds:

(1) According to THM (18), each local mass or dynamic mass
mi causes unidirectional additional volume in its vicinity. The
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dz

dz

dAz

dV = dAz · dz
without additional volume;

δz

δVz = dAz · δz

with additional volume
the z-coordinate of the upper surface is named dz′

Figure 12.1: Additional volume in the z-direction: A cube with
lower and upper surface dAz is enlarged. Thereby, the upper
surface is a portion or increment δz higher than at the left.
Hereby, the upper position is at dz′ = dz + δz.

LFV LFV

LFV

Figure 12.2: Unidirectional LFV at masses or dynamic masses can
summarize to isotropic GFV.
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volume caused by a mass propagates in a radial direction. That
direction is marked by an index q. In particular, ∂

∂Lq
marks the

derivative in that direction, εL,i,qq marks the tensor element of

that direction, ~eq is the unit vector of that direction, G∗mi,q
(τ, ~L)

is the coordinate of the field of that direction (in an appropri-
ate local coordinate system). That unidirectional additional vol-
ume propagates according to the following nonhomogeneous lin-
ear DEQ (Eq. 11.7):(

c · ∂
∂τ
− c2 · σout,i ·

∂

∂Lq

)
εL,i,qq(τ, ~L) = G∗mi,q

(τ, ~L) (12.7)

(2) As the above DEQ is linear, the rates of N masses mi add
up:

N∑
i=1

(
c
∂

∂τ
− c2σout,i

∂

∂Lq

)
εL,i,qq(τ, ~L) =

N∑
i=1

G∗mi,q
(τ, ~L) (12.8)

(3) At a location ~L that has a sufficient distance to the masses
mi, the fields can compensate each other (Fig. 12.2). In
that case, the following holds:

(3a) The dynamics is characterized by the homogeneous DEQ:

N∑
i=1

(
c
∂

∂τ
+ c2σout,i

∂

∂Lq

)
εL,i,qq(τ, ~L) = 0 (12.9)

N∑
i=1

c
∂

∂τ
εL,i,qq(τ, ~L) =

N∑
i=1

c2σout,i
∂

∂Lq
εL,i,qq(τ, ~L) (12.10)

(3b) The volume caused by each mass propagates according to
the homogeneous DEQ:

cε̇L,i,qq(τ, ~L) = c2σout,i
∂

∂Lq
εL,i,qq(τ, ~L) (12.11)

(3c) We transform the unidirectional rate ε̇L,i,qq for the di-
rection ~eq of propagation to the unidirectional rate ε̇L,i,jj of a
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common coordinate system used for all masses mi. As usual,
we derive the transformation with help of an invariant.

[1] For it, we use the kinetic energy density (Eq. 11.21)
c2ε̇2

L,i,qq = 8πG · ukin,i:

c2ε̇2
L,i,qq = 8πG · ukin,i (12.12)

[2] We use the kinetic tensor (Eq. 11.28):

c2ε̇2
L,i,qq = c2 ·

3∑
j=1

ε̇2
L,i,jj (12.13)

[3] In order to consider all masses, we apply the average with
respect to N masses mi that cause these rates:

1

N

N∑
i=1

ε̇2
L,i,qq = 〈ε̇2

L,i,qq〉i =
3∑
j=1

〈ε̇2
L,i,jj〉i (12.14)

[4] As the masses are distributed in an isotropic manner, the
averaged tensor elements are equal for each j:

〈ε̇L,i,11〉i = 〈ε̇L,i,22〉i = 〈ε̇L,i,33〉i (12.15)

[5] Thus, the above sum
∑3

j=1 provides the factor three:

〈ε̇2
L,i,qq〉i = 3〈ε̇2

L,i,jj〉i (12.16)

[6] As the masses have a homogeneous density ρhom, the stan-
dard deviations 〈ε̇2

L,i,jj〉i − 〈ε̇L,i,jj〉2i and 〈ε̇2
L,i,qq〉i − 〈ε̇L,i,qq〉2i can

be neglected in a good approximation:

〈ε̇L,i,qq〉2i = 3〈ε̇L,i,jj〉2i or (12.17)

〈ε̇L,i,jj〉i = 〈ε̇L,i,qq〉i/
√

3 (12.18)
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[7] We express the rate in terms of the density (Eq. 12.12):

〈ε̇L,i,jj〉i = 〈
√

8πGukin,i/c2〉i/
√

3 or (12.19)

〈ε̇L,i,jj〉i = 〈
√

8πG · ρkin,i/3〉i (12.20)

(3d) We apply the transformed unidirectional rate 〈ε̇L,i,jj〉i, in
order to derive the isotropic rate ε̇L,iso by summation (volume is
additive). As usual, we derive the transformation with help of
an invariant, the kinetic energy density, which is proportional
to the squared rate.

[1] For it, we apply the tensor ukin,jj:

ε̇L,iso =
3∑
j=1

〈ε̇L,i,jj〉i =
3∑
j=1

〈
√

8πG · ρkin,i/3〉i (12.21)

[2] According to isotropy, the sum provides the factor three:

ε̇L,iso = 〈
√

24πG · ρkin,i〉i (12.22)

[3] Corresponding to homogeneity, as before, and in an appro-
priate approximation, we neglect a standard deviation:

ε̇2
L,iso = 〈

√
24πG · ρkin,i〉2i = 〈

√
24πG · ρkin,i

2〉i or(12.23)

ε̇2
L,iso = = 24πG · 〈ρkin,i〉i2 (12.24)

(3e) In the GFV, the above average ε̇2
L,iso describes the squared

rate V̇
V , and the above average 〈ρkin,i〉i describes the density of

the kinetic energy density of the propagating relative additional
volume.

(4) Altogether, we showed, that the density of the kinetic en-
ergy of the propagating relative additional volume provides the
isotropic squared rate ε̇2

L,iso, whereby this density and its rate
are in full accordance with the rate of formation of volume of a
density in the FLE (THM 20).
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Proof: The proof is provided by the explained transformations
in the theorem.

Corollary 18 LFV adds up to GFV

(1) At a location ~R, globally formed volume, GFV, has been
observed independently with help of many probes, see e. g.
Planck-Collaboration (2020), Riess et al. (2022), Blakeslee et al.
(2021), Philcox et al. (2020). Thereby, GFV is isotropic, and
it is usually described by the FLE.

(2) At a location ~R, the Schwarzschild metric has been observed
independently with help of many probes, see e. g. Pound and
Rebka (1960), Will (2014). With it, locally formed volume,
LFV, can be evaluated, see chapters (7, 8, 9, 11). Thereby,
LFV is unidirectional.

(3) At a location ~R, there arrives unidirectional LFV caused
by many masses or dynamic masses mi. Thereby, in general,
classical fields are compensated at ~R. Accordingly, the LFV
propagates corresponding to the DEQ of additional volume, see
chapter (8).

(4) At the location ~R, the kinetic energy density of LFV caused
by these mi adds up. Moreover, many directions of unidirec-
tional LFV add up to isotropic additional volume. The rate of
that sum as a function of its density is equal to the rate as a
function of density of the FLE.

(5) Altogether, the rate of GFV is explained in terms of the rate
of LFV coming from several mi.

(6) So, the global dynamics of space is derived from the local
dynamics of space at the level of the formation of additional
volume.

The derivations in part (II) and in parts (III, IV) are shown in
a cognitive map, Fig. (12.3).
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first principles, SQ: SR EP GG DV

position factor εE (C. 3), SM

quantization
(C. 4)

expansion
(C. 5)

ugr. f.

(C. 6)

theory of dynamic volume (part II)

spacetime
curvature

gravity
trans−
mission

quantum
postulates
(C. 13, 14)

ρvol · c2 = uvol
DV

(C. 19− 22)

PLA (C. 23)nonlocality explained (C. 16, 18)

semiclassical GR (C. 23)simple action (C. 23) ...

Figure 12.3: Paths of derivation: from first principles to the
DEQs of volume and beyond. The light-travel distance dLT , the
gravitational parallax distance dGP and energy conservation in
a stationary system, see Noether (1918), are used. C. 16-22 are
beyond usual QP and GR, including the Schwarzschild metric,
SM.
SQ: spacetime quadruple
SR: special relativity
EP: equivalence principle
GG: generalized Gaussian gravity
DV: dynamic volume
εE: position factor describing energy
ugr.f.: energy density of the gravitational field
PLA: principle of least or stationary action
ρvol: dynamical density of volume.
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Chapter 13

Stabilization of Quanta

Question: Do the dynamics of volume form the quantum at
the smallest possible portion of energy at a given radius?

We analyze the dynamics of a ball with a radius rb and with
a relative additional volume εL,b = δV

dVL
. Consequently, the ball

has the volume Vb = 4π
3 r

3
b , the complete volume VL = 4π

3 r
3
L

and the surface A = 4πr2
L. In the context of εL,b, the volume

VL is named dVL, C. (7). Thence, the ball has the following
additional volume, see THM (10):

δV = VL − Vb = dVL · εL,b, with dVL = VL (13.1)

Accordingly, εL,b ranges from 0 towards 1:

VL = δV + Vb, thus, δV ≤ VL and εL,b ≤ 1 (13.2)

During a time δτ , the outer shell with thickness c·δτ propagates
outwards. Thus, the ball looses the additional volume δVout in
that shell:

δVout = c · δτ · A · εL,b (13.3)

The corresponding rate ε̇L,out is as follows, see THM (10):

ε̇L,out =
δVout
dVLδτ

=
A · c
VL

εL,b =
3c

rL
· εL,b, with dVL = VL(13.4)
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During the same time δτ , the additional volume of the ball
exhibits unidirectional formation of volume at the rate ε̇L,jj,
named ε̇L,formed in this context (THM 18, part 4c):

δVformed = ε̇L,formed · δτ · dVL (13.5)

The difference of ε̇L,formed and ε̇L,out is the rate of relative
additional volume of the ball:

ε̇L,b = ε̇L,formed − ε̇L,out = ε̇L,formed −
3c

rL
· εL,b (13.6)

The sign of the rate ε̇L,b exhibits three cases:
(1) If ε̇L,b = 0, then εL,b is constant.
(2) If ε̇L,b < 0, then εL,b decreases. Thus, the subtrahend in
the rate in Eq. (13.6) decreases. Consequently, the rate ε̇L,b
increases. This process takes place in a local, successive and
asymptotic manner (C. 7, 11), until the rate is zero, ε̇L,b = 0.
As a consequence, case (1) is reached.
(3) If ε̇L,b > 0, then εL,b increases. Consequently, ε̇L,b decreases,
as the subtrahend in the rate in Eq. (13.6) increases. This pro-
cess takes place in a local, successive and asymptotic manner,
until the rate is zero, ε̇L,b = 0. Hence, case (1) is reached.

Cases (0-3) show that the dynamics of the rate ε̇L,b converge
towards the stable fixed point ε̇L,b = 0.

ε̇L,b converges to the stable fixed point ε̇L,b = 0. (13.7)

We analyze the fixed point (Eqs. 13.6, 13.7) of the rate. At
that fixed point, the rate of formation is as follows:

ε̇L,formed = ε̇L,out =
3c

rL
· εL,b (13.8)

The rate ε̇L,formed represents ukin =
ε̇2
L,formedc

2

8πG . As ε̇L,formed rep-
resents the formation of volume (THM 18, part 4c), ε̇L,formed
does not correspond to a potential energy. Thus, the energy
Efp of the wave packet is ukin multiplied by VL:
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Efp = ukin · VL =
ε̇2
L,outc

2

8πG
VL =

3

2
· c
rL
· c

3

G
r2
L · ε2

L,b > 0 (13.9)

We estimate Efp: As we analyze a smallest portion of energy,
we obtain the longest possible wavelength λ in the ball (C. 4).
It is the circumference λ = 2πrL. With it, we derive:

Efp =
3

2
· 2πc
λ
· c

3

G
r2
L · ε2

L,b (13.10)

Universal quantization implies (C. 4), that a smallest portion of
energy Efp is proportional to the inverse of the wavelength λ.
Thus, for each rL, the factor r2

L in Eq. (13.10) must cancel out.
This can take place only by the factor ε2

L,b, as other available
factors are constants. So, r2

L · ε2
L,b is a constant q2

b :

r2
L · ε2

L,b = q2
b or rL = qb/εL,b (13.11)

Thereby, rL ranges from the Planck length towards the light
horizon, rL ∈ [LP , RLH ]. We use the very good approximation
rL ∈ [LP ,∞[. Thus, at the largest possible value of εL,b, at
εL,b = 1 (Eq. 13.2), the radius rL is equal to LP :

rL = qb = LP , at minimal rL and at εL,b = 1 (13.12)

So, rL is the following function of εL,b (Eqs. 13.11, 13.12):

rL =
LP
εL,b

or εL,b =
LP
rL

(13.13)

With it and with 2πc
λ = ω, the energy in Eq. (13.10) is:

Efp =
3

2
· ω · c

3

G
· L2

P (13.14)

Application of the Planck length LP =
√
G · ~/c3 (see glossary)

yields the following energy, see Eq. (13.14):

Efp = 3 · ~ω
2

(13.15)

Efp describes the ZPOs of the ball, in three-dimensional space.
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Theorem 22 How the dynamics of volume forms quanta

The dynamics of volume, DV, forms quanta with a radius rL
and with a relative additional volume εL,b as follows:

(1) The rate ε̇L,b converges to a stable fixed point with ε̇L,b = 0.

(1a) At the fixed point, fp, the rate ε̇L,out of volume propagating
outwards and the rate ε̇L,formed of formation are equal:

ε̇L,formed = ε̇L,out =
3c

rL
· εL,b (13.16)

(1b) The rate ε̇L,formed of formation causes kinetic energy Efp,
without potential energy (THM 18, part 4c):

Efp =
3

2
· c
rL
· c

3

G
· r2

L · ε2
L,b (13.17)

(1c) At the fixed point and at lowest energy, Efp is as follows:

Efp = 3 · ~ω
2

with ω =
2πc

λ
and λ = 2πrL (13.18)

Efp is the energy of the three ZPOs of the ball in 3D space.
That energy is derived formally in section (14.5).

(2) Altogether, for each radius rL, the DV can form the isotropic
quantum of lowest energy at that radius. The quantum is a
stable fixed point of the dynamics of volume. Depending on
initial conditions, other functions ε̇L(t, ~R are possible.

(3) The DV can form dynamically stable quanta. These gener-
ate volume contributing to the expansion of space since the Big
Bang (C. 12). The quanta unify microcosm and macrocosm in
nature, they are described by the DV, and the DV unifies the
theories of spacetime, gravity and quantum physics.

(4) The quantum is a stable fixed point of DV, whereby DV
forms as fast in the quantum as DV is lost at the surface region
of the quantum.



Chapter 14

Derivation of Quantum
Postulates

Idea: As the volume propagates at the velocity of light, it is
quantized (chapter 4). Thus, the exact DEQ of formation and
propagation of relative volume εL in THMs (12, 13, 14 and
18) could be the basis of the DEQ of quanta, the Schrödinger
equation, SEQ. Moreover, the full dynamics of volume could
provide the postulates of quantum physics.

In this chapter, we derive the postulates of quantum physics1.
For it, we use the basic principles of the SQ, see chapter (2),
and we apply consequences of these basic principles, see Fig.
(12.3).

The derived postulates2 include the five postulates presented
by Kumar (2018) as well as the postulate about mixed states in
(Ballentine, 1998, p. 46). We begin with the postulate about
the time evolution.

14.1 Time evolution

In this section, we derive the postulate about the time evolution,
(Kumar, 2018, p. 170):

1Earlier derivations, see Carmesin (2022d), Carmesin (2022a), Carmesin (2022f), in-
clude the FDA at some points. In this book, we provide an exact derivation.

2Hilbert et al. (1928) proposed an early system of postulates, for instance.
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Postulate 1 Time evolution

’The time evolution of the state vector is governed by the time-
dependent Schrödinger equation, SEQ, see (Schrödinger, 1926b,
Eq. (4”)):

i~∂t|ψ〉 = Ĥ|ψ〉, (14.1)

where Ĥ is the Hamilton operator corresponding to the total
energy of the system.’

Hereby, the wave function |ψ〉 represents a complex valued func-
tion. Thus, the complex conjugate function fulfills the DEQ
with an opposite sign, see (Schrödinger, 1926b, p. 112 or § 1):

−i~∂t|ψ〉∗ = Ĥ|ψ〉∗, (14.2)

Thus, in quantum physics, the sign in the SEQ is a convention.
Thence, more adequately, the square of the SEQ holds, this
corresponds to the Lorentz invariant equation in THM (14).

Derivation: The volume propagates according to the following
DEQ, see part (3) in THM (13), for an invariant formulation,
see THM (14):

∂τε(τ, ~L) = −∂~Lε(τ, ~L) · c (14.3)

We apply an additional derivative with respect to time τ (in or-
der to additionally derive the later postulate about probabilistic
outcomes):

∂τ ε̇(τ, ~L) = −∂~Lε̇(τ, ~L) · c (14.4)

Hereby, we mark the time derivative with a dot:

∂τε(τ, ~L) = ε̇(τ, ~L) (14.5)

In order to derive the usual SEQ, we multiply by i~ and by
a normalization factor tn:

i~∂τ · tn · ε̇(τ, ~L) = −i~∂~L · tn · ε̇(τ, ~L) · c (14.6)
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Hereby, the normalization factor tn is chosen so that the product
tn ·ε̇(τ, ~L) is normalized, whereby the norm in the corresponding
space of the functions tn · ε̇(τ, ~L) is used, see e. g. Teschl (2014)
or (Kumar, 2018, p. 18). Moreover, in order to derive the
traditional form (Kumar, 2018, p. 18) of the SEQ, we name the
function tn · ε̇(τ, ~L) wave function ψ:

ψ(τ, ~L) = tn · ε̇(τ, ~L) (14.7)

Hereby, the wave function may be expressed by the Dirac no-
tation alternatively (Kumar, 2018, section 4.2):

ψ(τ, ~L) = |ψ〉 (14.8)

14.1.1 Correspondence of operators and observables

If the application of an operator to the wave function
provides a physical quantity, then that operator can be
used to represent that measurable physical quantity or
observable. Such a correspondence of physical quantities and
operators is named correspondence principle, see e. g. Bohr
(1920), (Kumar, 2018, p. 267). For instance, the momentum
operator

p̂ = −i~∂~L (14.9)

provides the momentum:

−i~∂~Ltn exp(−iωt+ ikL) = ~k · tn exp(−iωt+ ikL) (14.10)

= p · tn exp(−iωt+ ikL) (14.11)

According to the usual convention, see e. g. (Kumar, 2018, p.
267), the above plane wave propagates inwards.

With it, the DEQ (14.6) of the propagation of volume takes
the following form:

i~∂τ · |ψ〉 = p̂ · c · |ψ〉 (14.12)
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14.1.2 Propagation of volume at v = c

As natural volume propagates at the velocity v = c, it has zero
rest mass m0. So it is quantized, see THM (5). Moreover, the
energy E is equal to the product of the momentum p and the
velocity c of light (Landau and Lifschitz, 1971, Eq. 9.6):

E = p · c (14.13)

Hereby, the energy E is described by the Hamiltonian H (Ku-
mar, 2018, p. 23):

H = p · c (14.14)

Accordingly, the Hamilton operator is the momentum operator
in Eq. (14.9) multiplied by c:

Ĥ = p̂ · c (14.15)

So, we derive the following DEQ of the propagation of nat-
ural volume:

i~∂t · |ψ〉 = Ĥ · |ψ〉 (14.16)

We identify the above DEQ of the propagation of natural vol-
ume with the Schrödinger equation (14.1). So, natural volume
propagates according to the Schrödinger equation, SEQ. We
summarize our finding:

Theorem 23 Volume and its dynamics imply the SEQ

(1) The natural volume propagates according to the Schrödinger
equation, SEQ:

i~∂τ · |ψ〉 = Ĥ · |ψ〉 (14.17)

(2) The DEQ of the propagation of natural volume implies the
postulate (1) about the time evolution of quantum physics, rep-
resented by the SEQ.
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14.1.3 Derivation: SEQ applicable to matter

Natural volume propagates according to the SEQ, see THM
(23). Matter forms from volume via phase transitions, see
for instance Higgs (1964), Aad et al. (2012), Carmesin (2021a,
2022e,c, 2019b, 2020b).

Similarly, ice can form from water by a phase transition.
Thereby, the same fundamental laws of physics are applicable
to water molecules in liquid water, solid water and gaseous wa-
ter. In general, the same fundamental laws of physics are ap-
plicable before, during and after a phase transition, see e. g.
van der Waals (1873), Landau (1937), Landau and Lifschitz
(1980), Carmesin et al. (1986), Klee et al. (1988), Carmesin
et al. (1989), Carmesin (1995).

Accordingly, the SEQ is applicable to volume before, during
and after the phase transition to matter. Thus, matter and sim-
ilarly antimatter propagate according to the SEQ. For instance,
the SEQ is applicable to an electron. Hereby, various theories
of quantum physics can be derived from the postulates derived
here, see chapter (15). We summarize our findings:

Proposition 5 SEQ is applicable to matter:

The SEQ is applicable to matter, as volume generates matter
by phase transitions, and as volume propagates according to the
SEQ.

14.1.4 Application of the SEQ to matter

In this section, we derive the particular form of time evolution
of an object with nonzero rest mass m0. The group velocity vg
of such an object is slower than the velocity of light, see e. g.
Kumar (2018).

Such an object has an energy momentum relation as follows
(Landau and Lifschitz, 1971, Eq. 9.6):

E2 = p2 · c2 +m2
0 · c4 (14.18)
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In order to obtain the respective Hamilton operator, we apply
the square root, we express the energy by the Hamiltonian H
(Kumar, 2018, p. 23), and we replace the observables H and p
by the respective operators (Kumar, 2018, section 2.7):

Ĥ =
√
p̂2 · c2 +m2

0 · c4 (14.19)

In order to obtain the corresponding SEQ, we apply the partic-
ular form of the Hamilton operator to the general form of the
SEQ (14.17):

i~∂τ · |ψ〉 =
√
p̂2 · c2 +m2

0 · c4 · |ψ〉 (14.20)

So, objects with rest mass propagate according to the SEQ.

14.1.5 Time evolution at pc� m0c
2

In this section, we analyze the case of an object propagating
relatively slow so that the energy of the rest mass m0c

2 is large
compared to the product pc. For it, we apply the Hamiltonian
in Eq. (14.19), whereby we factorize m0c

2:

Ĥ = m0c
2 ·
√

1 + p̂2/(m2
0 · c2) (14.21)

If the fraction in the above Eq. is relatively small compared to
one, then a linear approximation is appropriate:

Ĥ = m0c
2 ·
(

1 +
p̂2

2m2
0 · c2

)
(14.22)

In the above Eq., we evaluate the product:

Ĥ = m0c
2 +

p̂2

2m0
(14.23)

In non-relativistic physics, the energy of the rest mass m0c
2 is

not considered in the Hamiltonian (Landau and Lifschitz, 1965,
§ 17). So, m0c

2 is subtracted from the relativistic Hamiltonian:

Ĥnon−relativistic = Ĥ −m0c
2 =

p̂2

2m0
(14.24)



14.1. TIME EVOLUTION 159

Thus, the non-relativistic SEQ is derived by inserting the non-
relativistic Hamiltonian into the general SEQ (14.17):

i~∂τ · |ψ〉 = Ĥnon−relativistic · |ψ〉 or

i~∂τ · |ψ〉 =
p̂2

2m0
· |ψ〉 non− relativistic SEQ (14.25)

That form of the SEQ is very popular, Kumar (2018), (Landau
and Lifschitz, 1965, § 17), and a non-relativistic form has been
suggested by (Schrödinger, 1926b, Eq. 4”). We summarize:

Theorem 24 Volume implies the non-relativistic SEQ

(1) As matter forms from volume by a phase transition, volume
and matter propagate according to the SEQ. Similarly, antimat-
ter propagates according to the SEQ.

(2) The relativistic SEQ for objects at v = c (THM 23) implies
the SEQ for objects at v < c in items (3, 4, 5, 6). So, also
objects with a nonzero rest mass m0 are described by the SEQ
derived here.

(3) Objects of matter or antimatter have nonzero rest mass m0

and propagate according to the SEQ as follows:

i~∂τ · |ψ〉 =
√
p̂2 · c2 +m2

0 · c4 · |ψ〉 (14.26)

(4) In the case of relatively small kinetic energy density, p · c�
m0·c2, the following non-relativistic Hamiltonian is appropriate:

Ĥnon−relativistic = Ĥ −m0c
2 =

p̂2

2m0
(14.27)

With it, the DEQ of the propagation of volume implies the fol-
lowing form of the SEQ:

i~∂τ · |ψ〉 =
p̂2

2m0
· |ψ〉 non− relativistic SEQ (14.28)
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(5) More generally, a potential Vpot is added. With it, the DEQ
of the propagation of volume implies the following form of the
SEQ, which holds for matter:

i~∂τ |ψ〉 =

(
p̂2

2m0
+ Vpot

)
|ψ〉 non− relativistic SEQ(14.29)

(6) Even more generally, an interaction can be included in the
SEQ by using the principle of gauge invariance, see e. g. Lan-
dau and Lifschitz (1971), Weinberg (1996), Carmesin (2021e),
Carmesin (2022e).

(7) The sign in the SEQ is a convention only, (Schrödinger,
1926b, p. 112). Thus, more adequately, the square of the SEQ
describes nature. Indeed, that square is basically Lorentz invari-
ant, see THM (14).

(8) The wave function is equal to the rate of formation of vol-
ume, multiplied by a normalization factor tn:

ψ(τ, ~L) = tn · ε̇(τ, ~L) (14.30)

More adequately, you can omit the normalization, in order to
use the full information about the rate. In QP, that information
is not provided, so that the present theory of the dynamic volume
includes quantum theory. But quantum theory does not include
the present theory of the dynamics of volume.

14.2 Hilbert space

In this section, we derive the following postulate about Hilbert
space (Kumar, 2018, p. 168):

Postulate 2 Hilbert space

’The state of a quantum mechanical system, at a given instant
of time, is described by a vector |Ψ(t)〉, in the abstract Hilbert
space H of the system.’
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Derivation: Volume and matter propagate according to the
SEQ, see theorems (12, 23, 24). So, volume and matter prop-
agate according to a linear DEQ. The time derivative of a so-
lution of that DEQ, ε̇(τ, ~L), is used as a wave function Ψ, see
section (14.1). In the Dirac notation, a wave function Ψ is
named a state |Ψ〉.
Thereby, two wave functions, Ψ1(τ, ~L) and Ψ2(τ, ~L), form a
scalar product as follows:

〈Ψ1|Ψ2〉 =

∫
d3LΨ∗1(τ, ~L) ·Ψ2(τ, ~L) (14.31)

Hereby, the superscript ∗ marks the complex conjugate value,
this is nowadays usual in quantum physics, see e. g. Griffiths
(1994), Ballentine (1998), Scheck (2013), Kumar (2018).

Based on that scalar product, a state |Ψ〉 is multiplied by a
normalization factor tn so that the following scalar product is
equal to one:

〈Ψ · tn|Ψ · tn〉 =

∫
d3rΨ∗(~r, t) ·Ψ(~r, t) · |tn|2 = 1 (14.32)

Next, we show that these states form a Hilbert space H:

The states Ψ(~r, t) form a complete vector space, as they
are solutions of the linear and homogeneous SEQ, so that they
form a linear vector space, and so that they include all linear
combinations of states Ψ(~r, t), including Fourier integrals, for
instance. These form a complete Hilbert space H, see e. g.
(Teschl, 2014, p. 47) or (Sakurai and Napolitano, 1994, p. 57).

Altogether, the solutions of the DEQ of volume or matter form
a Hilbert space H. We summarize our finding.

Theorem 25 Volume implies the Hilbert space of states

(1) As natural volume propagates according to the Schrödinger
equation, the states of volume are the solutions of the SEQ, so
that they form a Hilbert space H.
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(2) As solutions of the DEQ of wave packets of volume or matter
at v < c obey the non-relativistic Schrödinger equation, such
solutions form a Hilbert space H as well.

(3) As the rates εL of relative additional volume are solutions
of the linear DEQ in THMs (38) or (18), these rates form a
Hilbert space H as well.

14.3 Observables and operators

In this section, we derive the following postulate about the rela-
tion between observables and operators (Kumar, 2018, p. 169):

Postulate 3 Observables correspond to operators

’A measurable physical quantity A (called an observable or dy-
namic physical quantity), is represented by a linear and hermi-
tian operator Â acting in the Hilbert space of state vectors.’

Correspondence principle: We remind the correspon-
dence of operators and physical quantities, see section (14.1.1):
If the application of an operator to the wave function
provides a physical quantity, then that operator can be
used to represent that physical quantity. The postulate
extends the above correspondence by an additional requirement:
To each measurable physical quantity A, there corresponds a
hermitian operator Â acting in the Hilbert space.

Derivation:

(1) As the volume and the states achieved by phase transitions
of volume include volume and matter, and as the quantization
is universal (THM 5), each physical state is described by the
SEQ or by an equation derived from the SEQ.

(2) Consequently, each physical state is a solution of the SEQ.

(3) As a consequence, each physical state is a state vector |state〉
in the Hilbert space H of the SEQ.
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(4a) Consequently, each physical function A is a function
A(|state〉) of at least one state vector |state〉.
(4b) At first order, a physical function A is a linear function
Â|state〉 of at least one state vector |state〉. That case is cov-
ered by the postulate (3). Thus, the present postulate includes
the convention that a physical function of first order is a mea-
surable physical quantity or observable.

(4bα) Hereby, the linear function is represented by a linear op-
erator Â acting in the Hilbert space of state vectors.

(4bβ) As each outcome of a measurement is real and member
of a discrete or continuous set, the linear operator is a hermi-
tian (or self-adjoint) operator, as such operators provide real
eigenvalues that are members of a discrete or continuous set of
eigenvalues (Teschl, 2014, THM 3.6 or spectral theorem):

Â = Â† (14.33)

(4c) At second order, a physical function A is a quadratic func-
tion A(|state〉2) of at least one state vector |state〉. That case
is covered by the postulate (14.6) below. It will turn out that
the second order gives rise to a variety of probability densities
ρ, including mixed states in postulate (6) and entanglement in
section (14.10) below.

(4d) At order n ≥ 3, a physical function A is an n − th power
A(|state〉n) of at least one state vector |state〉. That case is
essential in dimensional phase transitions in chapter (22 below.

We summarize our derivation.

Theorem 26 Observables and hermitian operators

Observables and operators are related as follows:

(1) According to section (14.1), the physical states of volume
and of matter fulfill the SEQ. Corresponding to universal quan-
tization (THM 5), all physical states fulfill the SEQ.
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(2) As a consequence, all physical states are solutions of of the
SEQ or of a DEQ derived from the SEQ (chapter 15).

(3) As a consequence, all states form a Hilbert space H.

(4a) Consequently, each physical function A is a function
A(|state〉) of at least one state vector |state〉.
(4b) At first order, a physical funtion A is a linear function
Â|state〉 of at least one state vector |state〉. That case is covered
by the postulate (3). Thus, the postulate describes a subset of
possible physical functions A. The quantities in this subset are
called observables or measurable physical functions, as a
convention. This does not restrict the generality of the system of
postulates, as higher order physical functions are described
by later postulates, see below. Hereby, the linear function is
represented by a hermitian (or self-adjoint) linear operator Â
acting in the Hilbert space of state vectors.

Â = Â† (14.34)

(4c) At second order, a physical function A is a quadratic func-
tion A(|state〉2) of at least one state vector |state〉. That case
describes probabilities, see postulate (14.6), mixed states, see
postulate (6) and entanglement, see section (14.10).

(4d) At order n ≥ 3, a physical function A is an n − th power
A(|state〉n) of at least one state vector |state〉.
(5) Altogether, the above items derive the postulate.

Corollary 19 Observables correspond to operators

According to THM (26), relative additional volume provides
many physical functions and observables or measurable phys-
ical quantities. Moreover, relative additional volume provides
the following properties:

(1) Relative additional volume εL propagates at v = c. Thus,
it is quantized in the universal manner, see THM (5). Hence,
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it can be described by the wave function Ψ = tn · ε̇L. Thence,
quantum physical observables correspond to operators.

(2a) Thereby, relative additional volume εL provides the follow-
ing properties:

(2b) The rate ε̇L includes a description of gravity, see THM (17,
9). Thus, the quanta in part (1) include the quantum physical
description of gravity.

(2c) The volume and the relative additional volume εL should
represent the same volume. Thus, the relative additional vol-
ume provides curvature of spacetime and its structure as well
as propagation, see THMs (1, 9, 12). Thus, the quanta in part
(1) constitute the quantization of curvature of spacetime.

(2d) Furthermore, the relative additional volume εL provides the
expansion of space since the Big Bang, see chapters (7, 9, 11,10,
12). Thus, the quanta in part (1) constitute the quantization of
the expansion of space since the Big Bang.

14.4 Outcomes of measurements

In this section, we derive the following postulate about the re-
lation between the possible outcomes of a measurement and the
eigenvalues (Kumar, 2018, p. 169):

Postulate 4 Outcomes of measurements are eigenvalues

’The measurement of an observable A in a given state may be
represented formally by the action of an operator Â on the state
vector |Ψ(t)〉. The only possible outcome of such a measurement
is one of the eigenvalues, {aj}, j = 1, 2, 3, . . . , of Â.’

Derivation: That postulate has already been derived in section
(14.3), see item (4b) in theorem (26).
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Figure 14.1: Wave packet at t = 0: Ψ(t, x) = sin(k · x − ω · t) ·
exp(−x
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2·σ2 ) (solid line). Envelope (dotted). k = 100/mm and
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14.4.1 On the physical reality of a state

An eigenvalue px of the momentum occurs at a corresponding
eigenfunction. Such an eigenfunction can be a harmonic wave,
for instance. E. g., Ψ(x, t) = tn·sin(k·x−ω·t) is an eigenfunction
of the momentum px = ~ · k. However, a harmonic function is
infinitely extended in the x direction. Such a function is not
part of physical reality, as the light horizon presents a limit of
observation, see DEF (15).

A realistic state is a wave packet, see e. g. (Kumar, 2018,
p. 61). For instance, the wave packet in Fig. (14.1) represents
a single wave function and it exhibits several eigenvalues of the
momentum. As that wave packet represents a single wave func-
tion, it is named a pure state, see e. g. (Ballentine, 1998, section
2.3). A mixture of several wave functions is named mixed state.
These are described in section (14.7).

Corollary 20 Spectrum of relative additional volume

(1) Relative additional volume εL propagates at v = c. Thus,
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it is quantized in the universal manner, see THM (5). If the
quanta of relative additional volume εL propagate in free space,
then harmonic waves with a basically continuous spectrum are
solutions of the DEQ, see THM (13).

(2) Relative additional volume εL cannot be reflected. Thus,
it cannot be captured in a resonator. Similarly, it cannot be
captured by any interaction. Relative additional volume εL al-
ways propagates in the available possibly curved space in a free
manner. Waves propagating freely in space have a continuous
spectrum.

(3) Quanta of relative additional volume have a causal hori-
zon, the light horizon RLH . Thus, causally connected waves
are limited by RLH . Thus, the waves have a causally open end at
RLH . Hence, the wavelengths have an almost continuous spec-
trum. Based on that limitation by RLH , the density of volume
has been derived, see chapter (22).

(4) Altogether, in natural space, relative additional volume has
a causal limitation at the light horizon at astronomically large
wavelengths. Thus, the spectrum is almost continuous.

14.5 Energy of a wave packet of a RGW

Question: In chapter (4), we analyzed monochromatic waves.
However, a quantum object represents a wave packet, see Fig.
(14.1) or COR (9). What energy Eω has a wave packet of a
RGW at a central circular frequency ω0? In this section, we
analyze that question. Thereby, we achieve an especially deep
understanding of the zero-point energy.

14.5.1 Modes of a wave packet of a RGW

Idea: A wave packet is a superposition of many modes of var-
ious wavelengths. We derive such a superposition by using
(Carmesin, 2021d, section 5.6.4):
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Superposition of modes in a wave packet:

A wave packet is polychromatic. It can be described as follows:

(1) Orthonormal basis: It is convenient to apply normaliza-
tion factors ν. With these, we use functions, representing plane
waves propagating in a direction ~k:

bµ = νb · exp(iωµ · τ) and fµ = νf · exp(−i~kµ · ~L) (14.35)

So, we obtain a set of orthonormal basis functions. Hereby, we
denote the complex conjugate by a star (for instance, f ∗µ is the
complex conjugate of fµ):∫

fµ · f ∗µ′ d3L = δµ,µ′ (14.36)

(2) Representation by orthonormal basis: In that basis,
an RGW has amplitudes ε̂µ of the monochromatic waves. So
we get:

εL(~L, τ) = Σµε̂µ · bµ(τ) · fµ(~L) + εµ,const. (14.37)

Similarly, the potentials can be expressed with amplitudes φ̂µ:

φL(~L, τ) = Σµφ̂µ · bµ(τ) · fµ(~L) + φµ,const. (14.38)

We apply this representation to the energy density in chapters
(6, 11). Thereby the squares represent absolute values:

uRGW (εL, φL) =
c2

8π ·G
· |ε̇2

L| −
|(∂~LφL)2|

8π ·G
(14.39)

(3) Polarization: The RGW can oscillate in various directions
represented by the tensors developed in chapter (10). In order
to provide relatively short formulas, we include these tensors in
the amplitude. So the index µ summarizes the indices of the
basis function fµ, of the polarization q, and of the tensor i and
j. So we get:

ε̂µ = ε̂µ,amplitude of fµ · ε̂q,ij (14.40)
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Correspondingly, the indices inherent to µ must be explicated,
whenever they become essential.

(4) Separation of modes µ: Next, we separate the modes µ
inherent to |ε̇2

L|. For it, we evaluate |ε̇2
L| by using Eq. (14.37).

Moreover, we replace the absolute values of a square z2 of a
complex number z by the product z · z∗:

|ε̇2
L| = Σµ,µ′ ε̂µε̂µ′ · ∂τbµ∂τb∗µ′ · fµf ∗µ′ = Σµ,µ′ωµωµ′ ε̂µε̂µ′ · bµb∗µ′ · fµf ∗µ′

(14.41)
Analogously we evaluate |(∂~LφL)2|:

|(∂~LφL)2| = Σµ,µ′φ̂µφ̂µ′ · bµb∗µ′ · ∂~Lfµ∂~Lf
∗
µ′ (14.42)

We evaluate the derivative, and we apply φ̂µ = ε̂µ · c2 (THM
13):

|(∂~LφL)2| = Σµ,µ′
~kµ~kµ′ ε̂µε̂µ′ · c4 · bµb∗µ′ · fµf ∗µ′ (14.43)

Next, we insert Eqs. (14.42) and (14.43) into Eq. (14.39):

uRGW (εL, φL) = Σµ,µ′ ε̂µε̂µ′ · bµb∗µ′ · fµf ∗µ′ ·

(
c2ωµωµ′

8πG
− c4~kµ~kµ′

8πG

)
(14.44)

In order to derive the energy, we integrate over the space:

ERGW =

∫
uRGW d3L (14.45)

(5) Modes ranging up to RLH : In this part we integrate the
modes ranging from zero towards the light horizon. We call the
corresponding energy ERGW,LH . Thereby, the light horizon is a
function of time during the expansion since the Big Bang, and
the essential light horizon has been elaborated in (Carmesin
(2018c,b, 2019b,a)). We apply that range to Eq. (14.45):

ERGW,LH = 4π ·
∫ RLH

0

L2 · uRGW dL (14.46)
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We insert Eq. (14.44), and we evaluate the integral (see Eq.
14.36) as well as δµ,µ′. So we get:

ERGW,LH =
1

2
· Σµε̂µε̂µ · bµb∗µ ·

c2

G
·
(
ω2
µ − c2~k2

µ

)
(14.47)

(6) Generalized coordinates of RGWs Qµ(t): We introduce
a coordinate Qµ and its momentum Pµ with:

Qµ = ε̂µ · bµ ·
c√
G

and Pµ = i
dQµ

dτ
and P ∗µ = −i

dQ∗µ
dτ

(14.48)
Hereby, we identify Pµ as a generalized momentum of Qµ: In
general, a momentum is a time derivative of a generalized coor-
dinate multiplied by a generalized mass or factor of inertia. In
the present case, the generalized factor of inertia is the complex
unit i.

We determine derivatives as follows:

PµP
∗
µ =

dQµ

dτ

dQ∗µ
dτ

= ω2
µQµQ

∗
µ (14.49)

Moreover we utilize ~k2
µ · c2 = ω2

µ:

PµP
∗
µ = ~k2

µ · c2QµQ
∗
µ (14.50)

We apply Eqs. (14.49) and (14.50) to Eq. (14.47):

ERGW,LH =
1

2
· Σµ

(
QµQ

∗
µ · ω2

µ − PµP ∗µ
)

(14.51)

For each mode, this energy is expressed in terms of a four-vector
of generalized coordinates Qµ and momenta Pµ,j with spatial
Cartesian momenta PµP

∗
µ = Σ3

j=1Pµ,jP
∗
µ,j:

pµ,i =


Qµ · ωµ
Pµ,1
Pµ,2
Pµ,3

 With it we get: (14.52)



14.5. ENERGY OF A WAVE PACKET OF A RGW 171

ERGW,LH = ΣµERGW,LH,µ with (14.53)

ERGW,LH,µ =
1

2
· Σj=3

j=0p
∗
µ,j η̄jjpµ,j with (14.54)

η̄00 = 1 and η̄11 = η̄22 = η̄33 = −1. We summarize : (14.55)

Theorem 27 Modes of wave packets of RGWs:

The energy ERGW,LH of a wave packet of a RGW is as follows:

(1) ERGW,LH is a sum of energies of modes:

ERGW,LH =
1

2
· Σµε̂µε̂µ · bµb∗µ ·

c2

G
·
(
ω2
µ − c2~k2

µ

)
(14.56)

The above bracket is a relativistic square of the following four-
vector: 

ωµ
kµ,1 · c
kµ,2 · c
kµ,3 · c

 (14.57)

Thus, that bracket is a Lorentz scalar and a Lorentz invariant.

(2) The energy ERGW,LH of a wave packet is a sum of energies
ERGW,LH,µ of its modes:

ERGW,LH = ΣµERGW,LH,µ with (14.58)

ERGW,LH,µ =
1

2
· Σj=3

j=0p
∗
µ,j η̄jjpµ,j or (14.59)

ERGW,LH,µ =
1

2
·
(
QµQ

∗
µ · ω2

µ − PµP ∗µ
)

(14.60)

(3) Thereby, for each mode, the energy ERGW,LH,µ is a square
of the following four-vector of a generalized coordinate Qµ and
momenta Pµ,j:

pµ,i =


Qµ · ωµ
Pµ,1
Pµ,2
Pµ,3

 (14.61)
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Thus, the energy ERGW,LH,µ of each mode is a Lorentz scalar
and a Lorentz invariant.

(4) Hereby, for each mode of the wave packet, the generalized
coordinate and momenta are the following functions of the am-
plitude ε̂µ and of the time evolution bµ of the mode:

Qµ = ε̂µ · bµ ·
c√
G

and Pµ = i
dQµ

dτ
and P ∗µ = −i

dQ∗µ
dτ

(14.62)

Consequently, for each mode, the energy ERGW,LH,µ includes the
amplitude and time evolution of the mode.

14.5.2 Hamilton operator of a mode of a RGW

Idea: A wave packet of a RGW is a superposition of many
modes. For each mode, we derive the energy operator or Hamil-
ton operator. For it, we apply the postulates (1, 2, 3, 4), see
sections (14.1,14.2,14.3,14.4). Thereby, the Hamilton operator
provides the time evolution, see postulate (1).

Energy operator of a mode:

(1) Hamilton operator of a mode: Each mode has the fol-
lowing energy, see THM (27):

ERGW,LH,µ =
1

2
·
(
QµQ

∗
µ · ω2

µ − P ∗µPµ
)

(14.63)

According to the postulates (1-4), sections (14.1,14.2,14.3,14.4),
we introduce operators for the observables energy ERGW,LH,µ,
coordinate Q̂µ and momentum P̂µ. So we get:

Ĥµ =
1

2
·
(
Q̂µQ̂∗µ · ω2

µ − P̂µP̂ ∗µ
)

(14.64)

According to the postulates (1-4), sections (14.1,14.2,14.3,14.4),
each generalized coordinate and momentum have the following
commutator, see e. g. (Heisenberg (1927) or (Ballentine, 1998,
p. 78 or sections 3.3 and 3.4) or (Grawert, 1977, p. 37)):

Q̂µP̂µ′ − P̂µ′Q̂µ = [Q̂µ, P̂µ′] = i · ~ · δµ,µ′ (14.65)
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This relation can be derived as follows:

[Q̂k, P̂j]Ψ = (Q̂kP̂j − P̂jQ̂k)Ψ

[Q̂k, P̂j]Ψ = Qk
~
i
∂jΨ−

~
i
∂j(QkΨ)

[Q̂k, P̂j]Ψ = −~
i
δk,j = i~ · δk,j (14.66)

(2) Linear transformation: In order to derive ladder oper-
ators, see for instance (Ballentine, 1998, p. 152), we apply a
linear transformation to operators â+

µ and âµ as follows:

Q̂µ · ωµ = αµ
(
â+
µ + âµ

)
(14.67)

P̂µ = i · αµ
(
â+
µ − âµ

)
(14.68)

Hereby the parameter αµ is determined so that the commutation
relation of coordinate and momentum in Eq. (14.65) implies the
following commutation relation of ladder operators:

[âµ′, â
+
µ ] = δµ,µ′ (14.69)

In order to derive the commutation relation (Eq. 14.69), we
insert Eqs. (14.67, 14.68) into Eq. (14.65):

[Q̂µ, P̂µ′] =
2iα2

µ

ωµ
· [âµ, â+

µ′] =
2iα2

µ

ωµ
· δµ,µ′ (14.70)

We compare this term with Eq. (14.65). So we get:

2iα2
µ

ωµ
= i · ~ or αµ =

√
~ωµ/2 (14.71)

Altogether, we derived the commutation relation in Eq. (14.69),
and we obtain the following transformation:

Q̂µ · ωµ =
√
~ωµ/2

(
â+
µ + âµ

)
(14.72)

−iP̂µ =
√
~ωµ/2

(
â+
µ − âµ

)
(14.73)
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(3) Inverse transformation: From the above Eqs., the inverse
transformation is derived by solving for âµ and â+

µ . Thus, we
get:

â+
µ = (Q̂µ · ωµ − iP̂µ)/

√
2~ωµ (14.74)

âµ = (Q̂µ · ωµ + iP̂µ)/
√

2~ωµ (14.75)

(4) Energy operator: We insert the operators of the coordi-
nate Q̂µ and momentum P̂µ (Eqs. 14.72, 14.73) into Eq. (14.64).
For it, we derive the products

Q̂µQ̂∗µ · ω2
µ =

~ωµ
2
·
(
â+
µ â

+
µ + âµâ

+
µ + â+

µ âµ + âµâµ
)

(14.76)

and P̂µP̂ ∗µ =
~ωµ

2
·
(
â+
µ â

+
µ − âµâ+

µ − â+
µ âµ + âµâµ

)
(14.77)

Thus, the energy operator is the difference of these products
multiplied by one half:

Ĥµ =
1

2
· ~ωµ ·

(
âµ · â+

µ + â+
µ · âµ

)
(14.78)

We apply the commutator. So we get:

Ĥµ = ~ωµ ·
(
â+
µ · âµ + 1/2

)
. We summarize : (14.79)

Theorem 28 Energy operator of mode of a RGW:

Each mode of a wave packet, see THM (27), has an energy
operator or Hamilton operator as follows:

(1) The energy operator can be expressed as a function of the
operators of generalized coordinate and momentum:

Ĥµ =
1

2
·
(
Q̂µQ̂∗µ · ω2

µ − P̂µP̂ ∗µ
)

(14.80)

(2) The operators of generalized coordinate and momentum are
transformed to ladder operators:

â+
µ = (Q̂µ · ωµ − iP̂µ)/

√
2~ωµ (14.81)
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âµ = (Q̂µ · ωµ + iP̂µ)/
√

2~ωµ (14.82)

(3) The energy operator can be expressed as a function of the
ladder operators:

Ĥµ = ~ωµ ·
(
â+
µ · âµ + 1/2

)
(14.83)

14.5.3 Number states of a mode of a RGW

Idea: Each mode of a RGW has the Hamilton operator Ĥµ in
THM (28). With it, we derive the energy spectrum for each
mode:

(1) Essential operator in Ĥµ: We analyze the operator â+
µ âµ

in Ĥµ, usually called number operator:

N̂µ = â+
µ âµ (14.84)

Moreover we call its normalized Eigenstates |nµ〉 and the eigen-
values nµ:

N̂µ · |nµ〉 = nµ · |nµ〉 (14.85)

(2) Eigenstates of the number operator: We apply N̂µ to
âµ · |nµ〉, and we use the commutator. So we get:

N̂µ · âµ · |nµ〉 = âµ · (nµ − 1) · |nµ〉 = (nµ − 1) · âµ · |nµ〉 (14.86)

This Eq. shows that âµ·|nµ〉 is an Eigenstate with the eigenvalue
nµ − 1.

Similarly we apply N̂µ to â+
µ · |nµ〉, and we utilize the com-

mutator. So we obtain:

N̂µ · â+
µ · |nµ〉 = â+

µ · (nµ + 1) · |nµ〉 = (nµ + 1) · â+
µ · |nµ〉 (14.87)

This Eq. shows that â+
µ · |nµ〉 is an Eigenstate to the eigenvalue

nµ + 1.
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(3) Effect of ladder operators: Firstly, we analyze the matrix
element 〈nµ|âµâ+

µ |nµ〉. Here we identify the number operator:

〈nµ|âµâ+
µ |nµ〉 = 〈nµ|N̂µ + 1|nµ〉 = (nµ + 1)〈nµ|nµ〉 = nµ + 1

(14.88)
Secondly, we analyze the matrix element 〈nµ|â+

µ âµ|nµ〉. As
above, we identify the number operator:

〈nµ|â+
µ âµ|nµ〉 = 〈nµ|N̂µ|nµ〉 = (nµ)〈nµ|nµ〉 = nµ (14.89)

Both Eqs. (14.88, 14.89) are fulfilled by the following relations:

â+
µ |nµ〉 =

√
nµ + 1|nµ + 1〉 (14.90)

âµ|nµ〉 =
√
nµ|nµ − 1〉 (14.91)

We summarize the matrix elements of the ladder operator â+
µ

as follows:

〈n′µ|â+
µ |nµ〉 =

√
nµ + 1 · δn′µ,nµ+1 (14.92)

Accordingly, the ladder operator â+
µ is called raising operator.

Similarly, the matrix elements of âµ are represented as follows:

〈n′µ|âµ|nµ〉 =
√
nµ · δn′µ,nµ−1 for nµ > 0 (14.93)

Correspondingly, the ladder operator âµ is called lowering op-
erator.

(4) Spectrum: In order to derive the full spectrum of the
number operator, we show that the lowering of states ends at
the state |nµ〉 = 0:

âµ|1〉 =
√

1|0〉 and âµ|0〉 =
√

0| − 1〉 = 0 (14.94)

Starting at this state, the raising operator can successively cre-
ate the states with all positive natural numbers:

nµ ∈ {0, 1, 2, 3, ...} (14.95)
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(5) Zero-point energy of a mode µ: The spectrum of the
number operator has the smallest value zero at the state |0〉.
However, the eigenvalue of the energy of the state |0〉 is ~ωµ/2,
it can be derived as follows:

〈0|Ĥµ|0〉 = ~ωµ ·(〈0|N̂µ|0〉+〈0|1/2|0〉) = ~ωµ ·(0+1/2) (14.96)

This energy ~ωµ/2 is the zero - point energy, ZPE of the
mode µ of the RGW:

ZPEµ = ~ωµ · 1/2 (14.97)

We summarize our results:

Theorem 29 Quantization of modes of RGW:

Each mode in THMs (27, 28) of a wave packet of a RGW is
quantized as follows:

(1) The generalized coordinate and momentum of each mode are
quantized by application of the usual commutation rule:

[Q̂µ, P̂µ′] = i · ~ · δµ,µ′ (14.98)

(2) The generalized coordinate and momentum are transformed
to ladder operators:

â+
µ = (Q̂µ · ωµ − iP̂µ)/

√
2~ωµ (14.99)

âµ = (Q̂µ · ωµ + iP̂µ)/
√

2~ωµ (14.100)

(3) As a consequence, the ladder operators obey the following
commutation rule of bosons:

[âµ′, â
+
µ ] = δµ,µ′ (14.101)

(4) Hence there is the following number operator

N̂µ = â+
µ âµ (14.102)
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and its eigenstates are the number states |nµ〉 with the following
eigenvalues:

nµ ∈ {0, 1, 2, 3, ...} (14.103)

(5) So the energy operator is expressed by the number operator:

Ĥµ = ~ωµ ·
(
â+
µ · âµ + 1/2

)
= ~ωµ ·

(
N̂µ + 1/2

)
(14.104)

(6) Thus the ladder operators raise or lower the numbers:

〈n′µ|â+
µ |nµ〉 =

√
nµ + 1 · δn′µ,nµ+1 (14.105)

〈n′µ|âµ|nµ〉 =
√
nµ · δn′µ,nµ−1 for nµ > 0 (14.106)

(7) The zero-point energy, ZPE, is as follows:

ZPEµ = ~ωµ · 1/2 (14.107)

(8) Inherent to the quantized RGWs, there is only one restric-
tion of the wavelengths: the light horizon, RLH , inherent to
the modes of the RGWs. Thus, the quantized modes of a wave
packet of a RGW exhibit a continuous spectrum at a very good
approximation only limited by RLH .

(9) Each mode of a wave packet of a RGW represents a general-
ized coordinate Q̂µ, which represents the amplitude ε̂µ of volume
εL.

(9a) According to the Higgs mechanism, volume can transform
to matter, see e. g. Higgs (1964), Carmesin (2021a), Carmesin
(2022c). Thereby, an excited state at nµ ≥ 1 can occur.

(9b) Natural volume is not an excited state, as otherwise en-
ergy of natural volume could be transformed to another energy.
Thus, natural volume is a zero-point oscillation, ZPO. It is at
nµ = 0, and it has the ZPE. A portion of natural volume is a
wave packet, it is formed by a superposition of modes ZPEµ.
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Thereby, the portion inherits a positive energy ZPEµ > 0. Fur-
thermore, the modes of a portion inherit the Lorentz invariance
from the Lorentz invariance of the generalized coordinate Q̂µ.

(9c) A state at nµ ≥ 1 can be achieved from a ZPO by an
excitation, for details see Carmesin (2021a), Carmesin (2021e),
Carmesin (2022e).

14.6 Probabilistic outcomes

In this section, we derive the following postulate about proba-
bilistic outcomes of measurements (Kumar, 2018, p. 169, 170).
Hereby, the used eigenfunctions form an orthonormal basis,
(Kumar, 2018, p. 169):

Postulate 5 Probabilistic outcomes of measurements

If a measurement of an observable A is made in a state |Ψ(t)〉
of the quantum mechanical system, then the following holds:

(1) The probability of obtaining one of the non-degenerate dis-
crete eigenvalues aj of the corresponding operator Â is given
by

P (aj) =
|〈φj|Ψ〉|2

〈Ψ|Ψ〉
, (14.108)

where |φj〉 is the eigenfunction of Â with the eigenvalue aj. If
the state vector is normalized to unity, P (aj) = |〈φj|Ψ〉|2.

(2) If the eigenvalue aj is mj-fold degenerate, this probability is
given by

P (aj) =
Σ
mj

i=1|〈φj,i|Ψ〉|2

〈Ψ|Ψ〉
, (14.109)

(3) If the operator Â possesses a continuous eigenspectrum {a},
the probability that the result of a measurement will yield a value
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between a and a+ da is given by

P (a) =
|〈φ(a)|Ψ〉|2

〈Ψ|Ψ〉
da =

|〈φ(a)|Ψ〉|2∫∞
−∞ |Ψ(a′)|2da′

da (14.110)

Derivation: In the following, we derive the probabilistic out-
comes of measurements, and we derive the probabilities.

14.6.1 Necessity of probabilistic outcomes

In the present theory based on the SQ, randomness is a neces-
sary consequence for the following reason:

We analyze an object emitted at ~r = ~0 in an isotropic man-
ner. Its wave function Ψ spreads in an isotropic manner.

Hereby, Ψ is proportional to the rate ε̇L. As the wave func-
tion Ψ represents the object, Ψ is a wave packet with a positive
energy Epacket > 0, see THM (29). Thus, the wave packet has a
positive energy density u(Ψ) > 0.

As a result of the isotropic spreading, after some time, the
amplitude of Ψ is small. Thereby, at a location ~r and at a
volume dV , the energy

dE(~r, dV ) = u(Ψ(~r)) · dV (14.111)

can be insufficient for the formation of the energy Epacket > 0
of the object.

As a consequence, the object forms in a probabilistic manner
at the location ~r and at the volume dV .

14.6.2 Probability of observation of an object

In this section, we analyze the probability p(~r, dV ) to measure
an object described by a wave packet within a volume dV at
a location ~r. Thereby, the wave packet has a positive energy
Epacket > 0. Moreover, the corresponding energy density of the
wave packet is described by the density ukin(~r) of the kinetic
energy, see C. (13).
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In this section, we show that the probability p(~r, dV ) is propor-
tional to the energy density ukin(~r) of the wave packet at that
volume:

p(~r, dV ) ∝ ukin(~r) (14.112)

This relation is derived as follows:

(1) If N objects are emitted at ~r = ~0, and if Nobs objects are
detected at the location ~r and within a volume dV , the relative
frequency N̄obs in statistics is as follows, see (Olofsson and
Andersson, 2012, p. 2):

N̄obs =
Nobs

N
(14.113)

(2) According to the (empirical) law of large numbers, see e.
g. Kolmogorov (1956), in the limit N to infinity, the expecta-
tion value and the probability describe experiments in a precise
manner. Correspondingly, the probability p(~r, dV ) is the limit
N to infinity of the relative frequency N̄obs:

lim
N→∞

N̄obs = p(~r, dV ) (14.114)

(3) The expectation value of the energy at the location ~r and
within a volume dV is the probability p(~r, dV ) to measure an
object multiplied with its energy Epacket:

〈dE(~r, dV )〉 = p(~r, dV ) · Epacket (14.115)

(4) The energy density ukin(~r) of the wave packet is the ratio
of the expectation value 〈dE(~r, dV )〉 and the volume dV :

ukin(~r) =
〈dE(~r, dV )〉

dV
=
p(~r, dV ) · Epacket

dV
∝ p(~r, dV ) (14.116)

This shows the relation in Eq. (14.112).
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14.6.3 Probability p(t, ~r) proportional to |Ψ(t, ~r)|2

Question: How is the energy density ukin(~r) related to the
wave function?

(1) The energy density ukin(~r) of the kinetic energy is propor-
tional to the square of the rates, see part (II) and C. (13):

ukin(~r) ∝ ε̇2
L(~r) (14.117)

As the rate is proportional to the wave function Ψ, the energy
density is proportional to the absolute square of Ψ:

ukin(~r) ∝ 〈Ψ|Ψ〉(~r) (14.118)

(2) The probability p(t, ~r, dV ) to measure an object described
by a wave packet within a volume dV at a location ~r and at a
time t is equal to a probability density function fR(t, ~r) at ~r and
at t multiplied by dV , Olofsson and Andersson (2012), Jahnke
et al. (2005), Müller (1975), Ash (2008):

p(t, ~r, dV ) = fR(t, ~r) · dV (14.119)

Thereby, the probability density function is proportional to the
energy density ukin (Eq. 14.116), which is proportional to the
absolute square of Ψ (Eq. 14.118):

fR(~r) ∝ |Ψ(~r)|2 (14.120)

Next, we normalize the above probability density function:

fR(~r) =
|Ψ(~r)|2

〈Ψ|Ψ〉
with 〈Ψ|Ψ〉 =

∫
d~r ′Ψcc(~r ′)Ψ(~r ′)

Ψcc = complex conjugated of Ψ (14.121)

14.6.4 Probability P (aj) in item (1)

In this section, we derive item (1) of the postulate.



14.6. PROBABILISTIC OUTCOMES 183

Derivation of the probability: For it, we use the probability den-
sity function in Eq. (14.121), and we apply the Dirac notation
(Kumar, 2018, section 4.2):

fR(~r) =
|Ψ(~r)|2

〈Ψ|Ψ〉
with |Ψ(~r)|2 = Ψcc(~r) ·Ψ(~r)

and Ψ(~r) = |Ψ(~r)〉 and Ψcc(~r) = 〈Ψ(~r)|
and

∫
d~r|Ψ(~r)|2 = 〈Ψ|Ψ〉 (14.122)

In order to obtain the traditional form of the postulate, we
transform the probability density function to the probability.
For it, we multiply by dV :

p(~r, dV ) = fR(~r) · dV =
|Ψ(~r)|2

〈Ψ|Ψ〉
· dV (14.123)

Next, we apply the integral
∫
d~r to Eq. (14.123), and we divide

by dV :∫
d~rp(~r, dV )/dV =

∫
d~rfR(~r) =

∫
d~r|Ψ(~r)|2

〈Ψ|Ψ〉
(14.124)

Transformation of the numerator: The numerator in the above
Eq. (14.124) is expressed as a scalar product:∫

d~r|Ψ(~r)|2 = 〈Ψ|Ψ〉 (14.125)

Next, we transform the state |Ψ〉 with the orthonormal3 eigen-
vectors |Φj〉 in item (1). So, we expand the ket |Ψ〉 as follows
(Kumar, 2018, Eq. 4.7.1):

|Ψ〉 =
∑
j

|Φj〉〈Φj|Ψ〉 (14.126)

3The eigenvectors of a hermitian operator are orthogonal (Kumar, 2018, THM 4.6.2),
and we normalize them.
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Similarly, we transform the bra 〈Ψ|:

〈Ψ| =
∑
k

〈Ψ|Φk〉〈Φk|, thus, (14.127)

∫
d~r|Ψ(~r)|2 = 〈Ψ|Ψ〉 =

∑
k

∑
j

〈Ψ|Φk〉〈Φk|Φj〉〈Φj|Ψ〉(14.128)

As the eigenfunctions are orthonormal, the above scalar prod-
uct 〈Φk|Φj〉 is equal to the Kronecker delta δkj (Kumar, 2018,
example 4.11.1):∫

d~r|Ψ(~r)|2 =
∑
k

∑
j

〈Ψ|Φk〉δkj〈Φj|Ψ〉 (14.129)

Using the Kronecker delta δkj, we evaluate one of the sums:∫
d~r|Ψ(~r)|2 =

∑
j

〈Ψ|Φj〉 · 〈Φj|Ψ〉 (14.130)

The product of the two scalar products in the above Eq. is
equal to the absolute square of one scalar product:∫

d~r|Ψ(~r)|2 =
∑
j

|〈Φj|Ψ〉|2 (14.131)

Transformed probability: Next, we apply the above integral to
the integral of the probability in Eq. (14.124):∫

d~rp(~r, dV )/dV =

∫
d~rfR(~r) =

∑
j

|〈Φj|Ψ〉|2

〈Ψ|Ψ〉
(14.132)

The integral of the probability density function provides the
complete probability one,

∫
d~rfR(~r) = 1. Similarly, the integral∫

d~rp(~r, dV )/dV = 1 provides the whole probability. Corre-
spondingly, the sum

∑
j is a sum of probabilities Pj as follows:

1 =
∑
j

Pj with Pj =
|〈Φj|Ψ〉|2

〈Ψ|Ψ〉
(14.133)
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Hereby, the scalar product 〈Φj|Ψ〉 describes the projection of
a wave function |Ψ(t, ~r)〉 to the new basis vector |Φj〉 in Eq.
(14.126). In the following, we do not mark the time, according
to the postulate (5). Correspondingly, Pj is the probability
to find the eigenvalue aj of the new basis vector |Φj〉 in the
projection of |Ψ(~r)〉. So, we mark that probability by P|Ψ(~r)〉(aj):

Pj = P|Ψ(~r)〉(aj) =
|〈Φj|Ψ〉|2

〈Ψ|Ψ〉
(14.134)

For comparison, the probability P (aj) in item (1) of the pos-
tulate describes the probability to find the eigenvalue aj of the
new basis vector |Φj〉 in the projection of |Ψ〉. We mark the
respective state, and we remind the term in that item (1):

P|Ψ〉(aj) =
|〈Φj|Ψ〉|2

〈Ψ|Ψ〉
(14.135)

Thus, we derived the probability in item (1).

14.6.5 Probability P (aj) in item (2)

In this section, we derive item (2) of the postulate.

Transformation of the numerator in Eq. (14.124): In the nu-
merator in Eq. (14.124), we transform the state |Ψ〉 to the
orthonormal4 eigenvectors |Φj,i〉 in item (2). In order to trans-
form the ket |Ψ〉 and bra 〈Ψ|, we expand in terms of the new
basis5 (Kumar, 2018, Eq. 4.7.1):

|Ψ〉 =
∑
j

mj∑
i=1

|Φj,i〉〈Φj,i|Ψ〉

4The eigenvectors of a hermitian operator and of different eigenvalues are orthogonal
(Kumar, 2018, theorem 4.6.2), those of equal eigenvalues can be chosen orthogonal, and
all eigenvectors can be normalized in addition.

5In principle, the upper bounds of the sum can tend to infinity.
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〈Ψ| =
∑
k

mk∑
n=1

〈Ψ|Φk,n〉〈Φk,n| (14.136)

Next, we apply the above transformations to the numerator in
Eqs. (14.123, 14.125): ∫

d~r|Ψ(~r)|2 = 〈Ψ|Ψ〉 =∑
k

mk∑
n=1

∑
j

mj∑
i=1

〈Ψ|Φk,n〉〈Φk,n|Φj,i〉〈Φj,i|Ψ〉 (14.137)

The scalar product 〈Φk,n|Φj,i〉 in the above Eq. is equal to the
product of Kronecker deltas δkjδin:∫

d~r|Ψ(~r)|2 =
∑
k

mk∑
n=1

∑
j

mj∑
i=1

〈Ψ|Φk,n〉δkjδin〈Φj,i|Ψ〉 (14.138)

Using the Kronecker deltas δkjδin, we evaluate two of the sums:∫
d~r|Ψ(~r)|2 =

∑
j

mj∑
i=1

〈Ψ|Φj,i〉〈Φj,i|Ψ〉 (14.139)

The product of two scalar products in the above Eq. is equal
to the absolute square of one scalar product:∫

d~r|Ψ(~r)|2 =
∑
j

mj∑
i

|〈Φj,i|Ψ〉|2 (14.140)

Transformed probability: In the numerator of the probability in
Eq. (14.124), we insert the transformed scalar product in Eq.
(14.140):∫

d~r
p(~r, dV )

dV
=

∫
d~rfR(~r) =

∑
j

∑mj

i |〈Φj,i|Ψ〉|2

〈Ψ|Ψ〉
(14.141)
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In the above Eq., the lhs is a probability. Correspondingly, the
rhs is a sum of probabilities Pj as follows:

1 =

∫
d~r
p(~r, dV )

dV
=
∑
j

Pj with

Pj =

∑mj

i |〈Φj,i|Ψ〉|2

〈Ψ|Ψ〉
(14.142)

Similarly as in item (1), Pj is the probability to find the eigen-
value aj of the new basis vector |Φj,i〉 in the projection of |Ψ〉.
Correspondingly, we name that state by P|Ψ〉(aj):

Pj = P|Ψ〉(aj) = P (aj) =

∑mj

i |〈Φj,i|Ψ〉|2

〈Ψ|Ψ〉
(14.143)

So, we derived the probability P (aj) in item (2) of the postulate.

14.6.6 Probability P (a) in item (3)

In this section, we derive item (3) of the postulate.

Transformation of the numerator in Eq. (14.124): We transform
the state |Ψ〉 to the orthonormal eigenvectors |Φ(a)〉 in item
(3). In order to transform the ket |Ψ〉 and bra 〈Ψ|, we expand
in terms of the new basis (Kumar, 2018, Eq. 4.7.1):

|Ψ〉 =

∫
da|Φ(a)〉〈Φ(a)|Ψ〉

〈Ψ| =
∫
db〈Ψ|Φ(b)〉〈Φ(b)| (14.144)

Next, we apply the above ket and bra to Eq. (14.124):∫
d~r|Ψ(~r)|2 = 〈Ψ|Ψ〉

=

∫
da

∫
db〈Ψ|Φ(b)〉〈Φ(b)| · |Φ(a)〉〈Φ(a)|Ψ〉 (14.145)
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As the eigenfunctions are chosen orthonormal, the scalar prod-
uct 〈Φ(b)| · |Φ(a)〉 in the above Eq. is equal to the delta function
alias delta distribution δ(a− b):∫

d~r|Ψ(~r)|2 =

∫
da

∫
db〈Ψ|Φ(b)〉δ(a− b)〈Φ(a)|Ψ〉 (14.146)

Using the delta function δ(a− b), we evaluate one integral:∫
d~r|Ψ(~r)|2 =

∫
da〈Ψ|Φ(a)〉 · 〈Φ(a)|Ψ〉 (14.147)

The product of two scalar products in the above Eq. is equal
to the absolute square of one scalar product:∫

d~r|Ψ(~r)|2 =

∫
da|〈Φ(a)|Ψ〉|2 (14.148)

Transformed probability: In the numerator in Eq. (14.124), we
insert Eq. (14.148):∫

d~rp(~r, dV )/dV =

∫
d~rfR(~r) =

∫
da|〈Φ(a)|Ψ〉|2

〈Ψ|Ψ〉
(14.149)

In the above Eq., the lhs is a probability. Correspondingly,
the rhs is an integral of probability density functions fA(a) as
follows: ∫

d~rp(~r, dV )/dV =

∫
dafA(a) with

fA(a) =
|〈Φ(a)|Ψ〉|2

〈Ψ|Ψ〉
(14.150)

Hereby, the scalar product 〈Φ(a)|Ψ〉 describes the amplitude of
the state |Ψ〉 with respect to the new basis vector |Φ(a)〉 in the
expansion in Eq. (14.144). Accordingly, fA(a) is the probability
density function to find the eigenvalue a of the new basis vector
|Φ(a)〉 in the projection of the state |Ψ〉. Correspondingly, we
multiply that probability density function by da in order to
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derive the probability to find the eigenvalue a of the new basis
vector |Φ(a)〉 in that projection of |Ψ〉 in the interval [a, a+da],
and we name that probability P|Ψ〉(a):

P|Ψ〉(a) =
|〈Φ(a)|Ψ)〉|2

〈Ψ|Ψ〉
· da = P (a) (14.151)

So, we derived the probability P (a) in item (3). We summarize:

Theorem 30 Probabilistic outcomes of measurements

The states of volume or of matter form a Hilbert space H,
whereby the following holds:

(I.1) At each location ~r, there occur states, so that the corre-
sponding rate ε̇L(t, ~r) is proportional to a wave function Ψ(t, ~r).
Hereby, the corresponding energy density ukin is proportional to
the probability density function fR(t, ~r) of the wave function.

(I.2) The normalized probability density function is as follows:

fR(t, ~r) =
|Ψ(t, ~r)|2

〈Ψ(t, ~r)|Ψ(t, ~r)〉
with 〈Ψ(t, ~r)|Ψ(t, ~r)〉 =

∫
dr3Ψcc(t, ~r) ·Ψ(t, ~r)

Ψcc = complex conjugated of Ψ (14.152)

The corresponding probability to find a quantum in a vicinity of
~r and with a volume dV is as follows:

p(t, ~r, dV ) = fR(t, ~r) · dV (14.153)

(I.3) The above probability represents a second order function
(square) of the state vector |Ψ(t, ~r)〉 in H, THM (26).

(I.4) Moreover, that probability is the basis of linear combina-
tions, by which a square of the state vector |Ψ(t, ~r)〉 in Hilbert
space is expanded with respect to eigenfunctions in Hilbert space.
Thereby, in particular, the probabilities of the measurement of
the eigenvalues are derived.
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(II) If a measurement of an observable A with an operator Â is
made at a state |Ψ〉, then the probability in item (I.2) provides
the probability to measure an eigenvalue of Â as follows.

(II.1) The probability of obtaining one of the non-degenerate
discrete eigenvalues aj of the corresponding operator Â is rep-
resented as follows:

P (aj) =
|〈φj|Ψ〉|2

〈Ψ|Ψ〉
(14.154)

Hereby, |φj〉 represent orthonormal eigenfunctions of Â, corre-
sponding to respective eigenvalues aj. If the state vector is nor-
malized to unity, the the probability for a discrete set of states
is P (aj) = |〈φj|Ψ〉|2.

(II.2) If the eigenvalue aj is mj-fold degenerate, that probability
to measure an eigenvalue aj is as follows:

P (aj) =
Σ
mj

i=1|〈φj,i|Ψ〉|2

〈Ψ|Ψ〉
(14.155)

(II.3) If the operator Â possesses a continuous eigenspectrum
{a}, then the probability that the result of a measurement will
yield a value between a and a+ da is as follows:

P (a) =
|〈φ(a)|Ψ〉|2

〈Ψ|Ψ〉
da

with 〈Ψ|Ψ〉 =

∫ ∞
−∞
|Ψ(a′)|2da′ (14.156)

14.7 Mixed states

In this section, we derive the following postulate about the ex-
pectation value of an observable in the case of a mixed state.

What is a mixed state?

Firstly, a pure state is a vector in Hilbert space.
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However, if we have insufficient knowledge about the objects of
a system, then we can describe the system in the framework of
statistical physics, see e. g. Landau and Lifschitz (1980). In the
case of a quantum system, such a system is in a mixed state.

A mixed state can be characterized as follows, see e. g. (Bal-
lentine, 1998, p. 46, 50):

Definition 13 Mixed state

(1a) In a mixed state, the orthonormal eigenfunctions φj of
an operator Â of an observable A and of a non-degenerate or
degenerate eigenvalue aj occur at corresponding probabilities pj.

(1b) The probabilities are non-negative and their sum is one:

pj ≥ 0

NA∑
j=1

pj = 1 (14.157)

Hereby, NA denotes the number of eigenvectors of Â.

(2) A mixed state can be described by a density operator as
follows (Sakurai and Napolitano, 1994, p. 180, 181):

ρ̂ =

NA∑
j=1

|φj〉pj〈φj| (14.158)

The density operator is also called state operator or statistical
operator, and the above form of that operator ρ̂ is called spectral
representation (Ballentine, 1998, p. 46 and section 2.3).

Postulate 6 Expectation value of a mixed state

To each state there corresponds a unique state operator. The
expectation (or average) value of a dynamic variable (or observ-
able) A, represented by the operator Â, in the virtual ensemble
of events that may result from a preparation procedure for the
state, represented by an operator ρ̂ is:

〈A〉 =
Tr(ρ̂ · Â)

Tr(ρ̂)
Hereby, Tr marks the trace. (14.159)
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Derivation: According to the definition of an expectation
value (Olofsson and Andersson, 2012, DEF 2.4.1), the expecta-
tion value 〈A〉 is the sum of the products of the probabilities
and eigenvalues:

〈A〉 =

NA∑
j=1

pj · aj (14.160)

As the DEQ of the RGWs is linear, and as the SEQ derived
therefrom is linear too, we can use linear algebra. With it, we
derive the postulate as follows:

The above sum is equal to the trace of a diagonal matrix,
in which the products pj · aj are the diagonal elements. Such a
matrix can be represented as follows:

diagonal matrix =

NA∑
j=1

|φj〉pj · aj〈φj|

with 〈φj|φk〉 = δjk (14.161)

So, the expectation value is the trace of that matrix:

〈A〉 = Tr

(
NA∑
j=1

|φj〉pj · aj〈φj|

)
(14.162)

We add an additional sum of δij, and we change two indices
from j to i, so that the value remains the same:

〈A〉 = Tr

(
NA∑
j=1

NA∑
i=1

|φi〉pi · δij · aj〈φj|

)
(14.163)

Next, we replace δij by the scalar product of orthonormal eigen-
functions 〈φi|φj〉:

〈A〉 = Tr

(
NA∑
j=1

NA∑
i=1

|φi〉pi · 〈φi|φj〉 · aj〈φj|

)
(14.164)
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Next, we move the sum
∑NA

j=1 to the place at which indices j
occur the first time, so that the value remains the same:

〈A〉 = Tr

(
NA∑
i=1

|φi〉 · pi · 〈φi| ·
NA∑
j=1

|φj〉 · aj · 〈φj|

)

we identify ρ̂ =

NA∑
i=1

|φi〉 · pi · 〈φi|

we identify Â =

NA∑
j=1

|φj〉 · aj · 〈φj| (14.165)

Here, we identified the first sum with the spectral representation
of the density operator, and we identified the second sum with
the spectral representation of Â. So, the expectation value is
the trace of the following product of operators:

〈A〉 = Tr(ρ̂ · Â) (14.166)

As we use orthonormal eigenfunctions, the trace of the spectral
representation of the density operator is one, Tr (ρ̂) = 1, so we
can divide by that trace6:

〈A〉 =
Tr(ρ̂ · Â)

Tr(ρ̂)
We summarize : (14.167)

Theorem 31 Expectation value in a mixed state

The DEQ of the RGWs is linear, and the SEQ derived therefrom
is linear too. So, linear algebra can be applied to the states of
quantum physics. With it, the above postulate has been derived:

In a mixed state, represented by a density operator ρ̂, the expec-
tation value 〈A〉 of an observable A, represented by the operator
Â, is as follows:

〈A〉 =
Tr(ρ̂ · Â)

Tr(ρ̂)
(14.168)

6Note that in another representation, that trace Tr (ρ̂) might have a value different
from one.
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14.8 Angular momentum and spin

In this section, we summarize a result that is useful in the fol-
lowing section (14.10).

Based on the postulates of QP, the quantum physics of angu-
lar momentum and spin can be developed (Sakurai and Napoli-
tano, 1994, chapter 3), (Scheck, 2013, chapter 4), (Ballentine,
1998, chapter 7). So, angular momentum and spin are conse-
quences of the SQ.

14.9 Identical particles

In this section, we derive the physics of identical particles.

14.9.1 Indistinguishability

In a system of N particles, each particle j is described by a
configuration ξj of physical quantities such as location, spin,
charge, etc., (Landau and Lifschitz, 1965, § 61). Thus, the wave
function and the Hamiltonian are functions of these variables:

Ψ = Ψ(ξ1, ξ2, ..., ξN) (14.169)

H = H(ξ1, ξ2, ..., ξN) (14.170)

Definition 14 Indistinguishable particles

(1) The permutation operator Pij exchanges particles i and
j. E. g. , at a wave function, Pij acts as follows:

PijΨ(ξ1, ξ2, ..., ξi−1, ξi, ..., ξj−1, ξj, ...ξN) (14.171)

= Ψ(ξ1, ξ2, ..., ξi−1, ξj, ..., ξj−1, ξi, ...ξN) (14.172)

(2) N particles are called indistinguishable, if the Hamilto-
nian does not change as a result of the permutation operator
Pij, see e. g. (Ballentine, 1998, section 17.3).

(3) If N particles are indistinguishable, then they are called
identical, see e. g. (Ballentine, 1998, section 17.3).
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14.9.2 Time evolution

The time evolution of a system of identical particles is provided
by the SEQ, see e. g. (Scheck, 2013, section 4.3.3) or (Ballen-
tine, 1998, section 17).

In the case of identical particles, the Hamiltonian is invariant
with respect to the permutation operator. As a consequence of
the above postulates (1, 2, 3, 4, 5), the Hamiltonian and the
Permutation operator can be transformed to the diagonal form
simultaneously, so they have eigenvectors and eigenvalues inde-
pendently, see e. g. (Ballentine, 1998, section 17.1). Thereby,
the only eigenvalues of Pij are ±1, as P 2

ij has the eigenvalue one:

PijΨ = ±1 ·Ψ (14.173)

If a wave function Ψ of Pij has the eigenvalue +1, then Ψ is
called symmetric. If a wave function Ψ of Pij has the eigen-
value −1, then Ψ is called antisymmetric.

Postulate 7 Symmetrization postulate

(1) The particles of a species are classified into two classes:

(1a) Either the particles of a species have symmetric wave func-
tions. Such particles are called Bosons.

(1b) Or the particles of a species have antisymmetric wave func-
tions. Such particles are called Fermions.

Derivation: As the permutation operator and the Hamilto-
nian can be transformed to the diagonal form simultaneously,
the symmetry or antisymmetry of the wave function do not
change during the time evolution. Thus, a type of particles has
either symmetric wave functions at all times, or these parti-
cles have antisymmetric wave functions at all times. Hence, the
types of particles are classified into Bosons and Fermions.
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14.10 Entanglement

14.10.1 System with several degrees of freedom

In general, a system S can consist of several degrees of freedom
ξi, with i ∈ {1, 2, 3, ..., N}. This includes the case that a system
consists of several objects. So, most generally, the wave function
of S is a function of all degrees of freedom:

Ψ = Ψ(t, ξ1, ξ2, ..., ξN) (14.174)

As derived above, the wave function describes a pure state,
whereby the case of mixed states is treated similarly as shown
in section (14.7).

As a consequence, by application of Eq. (14.120) to the
present case, we derive the joint density function, see e. g.
(Ash, 2008, section 2.6), f(t, ξ1∩ξ2∩...∩ξN) or f(t, ξ1, ξ2, ..., ξN).
Hereby, that joint density function is proportional to the prob-
ability for the simultaneous occurrence of the values ξ1 and ξ2

and ... and ξN . In particular, we derive that f(t, ξ1, , ξ2, ..., ξN)
is equal to the absolute square of the normalized wave function
Ψnorm:

f(t, ξ1, ξ2, ..., ξN) = |Ψnorm(t, ξ1, ξ2, ..., ξN)|2 (14.175)

The corresponding joint probability P (t, ξ1 ∩ ξ2... ∩ ξN) to find
ξi ∈ [ξi− δq/2, ξi + δq/2] with i ∈ {1, 2, 3, ..., N} is equal to the
probability density function multiplied by δqN , see (Ash, 2008,
section 2.6):

P (t, ξ1 ∩ ξ2... ∩ ξN) = |Ψnorm(t, ξ1, ξ2, ..., ξN)|2 · (δq)N (14.176)

Such a probability for the simultaneous occurrence of several
events is described in (Ash, 2008, section 2.6), (Olofsson and
Andersson, 2012, sections 1.2, 1.3, 1.4), for instance.
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14.10.1.1 System with independent degrees of freedom

In particular, a system S can consist of several independent
degrees of freedom ξi, with i ∈ {1, 2, ..., N}, see e. g. (Kol-
mogorov, 1956, § 5 in chapter I or chapter VI), (Ash, 2008,
section 2.6, 2.7, 2.8, 2.9).

As a consequence, the probability for the simultaneous occur-
rence of several events in Eq. (14.176) becomes a probability for
the simultaneous occurrence of several independent events.
According to probability theory, see (Olofsson and Andersson,
2012, DEF 1.5.2, 1.5.3, 1.5.4), the probability in Eq. (14.176)
becomes a product of the probabilities:

P (t, ξ1 ∩ ξ2... ∩ ξN) =
N∏
i=1

P (t, ξi) or

P (t, ξ1 ∩ ξ2... ∩ ξN) =
N∏
i=1

|Ψnorm(t, ξi)|2 · δq (14.177)

As the above rule should hold for all possible wave functions,
the wave function Ψnorm(t, ξ1, ξ2, ..., ξN) is a product of the wave
functions of the single degrees of freedom:

Ψnorm(t, ξ1, ξ2, ..., ξN) =
N∏
i=1

Ψnorm(t, ξi) (14.178)

In the literature, that product has also been named ten-
sor product, and the corresponding multiplication has been
marked by ⊗, see e. g. Sanz et al. (2016):

Ψnorm(t, ξ1, ξ2, ..., ξN)
= Ψnorm(t, ξ1)⊗Ψnorm(t, ξ1)⊗ ...⊗Ψnorm(t, ξN) (14.179)

This product rule for wave functions has been postulated in
quantum physics, see e. g. (Kinzel, 2021, section 3.1) or (Bal-
lentine, 1998, p. 470). In the literature, such a product state
has also been named separable, see e. g. Sanz et al. (2016). As
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a result of the above derivation, this postulate is a consequence
of the SQ.

14.10.1.2 System with dependent degrees of freedom

More generally, a system S can consist of several degrees of
freedom ξi, with i ∈ {1, 2, ..., N} that are not independent.

As a consequence, the probability for the simultaneous oc-
currence of several events in Eq. (14.176) does not represent
a probability of independent events. According to probability
theory, see (Olofsson and Andersson, 2012, DEF 1.5.2, 1.5.3,
1.5.4), the probability in Eq. (14.176) is not a product of the
probabilities:

P (t, ξ1 ∩ ξ2... ∩ ξN) 6=
N∏
i=1

P (t, ξi) or

P (t, ξ1 ∩ ξ2... ∩ ξN) 6=
N∏
i=1

|Ψnorm(t, ξi)|2 · δq (14.180)

As a further consequence, the above wave function of several
degrees of freedom in Eq. (14.180) Ψnorm(t, ξ1, ξ2, ..., ξN) is not a
product of the wave functions of the single degrees of freedom:

Ψnorm(t, ξ1, ξ2, ..., ξN) 6=
N∏
i=1

Ψnorm(t, ξi) (14.181)

Thus, the state Ψnorm(t, ξ1, ξ2, ..., ξN) in Eq. (14.180) is not sep-
arable. By definition, a state is called entangled if and only
if it is not separable, see e. g. Sanz et al. (2016) or Hordecki
et al. (2009).

So, the state Ψnorm(t, ξ1, ξ2, ..., ξN) in Eq. (14.180) is entan-
gled. Hence, we derived that entangled states are a consequence
of the SQ7.

7Correspondingly, entangled states occur in a variety of systems, see e. g. Aspect et al.
(1982). Entangled states do even occur in macroscopic or semiclassical systems containing
membranes, Rodrigo et al. (2021), or containing living bacteria, Marletto et al. (2017).
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Moreover, properties of entangled states and measures of en-
tanglement can be derived on the basis of the SQ. For instance,
the conditional variance Vc is a measure of usual probability
theory, see e. g. (Olofsson and Andersson, 2012, section 3.7.3),
and Vc can be applied as an efficient indicator for entanglement,
even in macroscopic systems, Rodrigo et al. (2021).

Theorem 32 Separability and entanglement

(1) In a system consisting of many degrees of freedom ξi, with
i ∈ {1, 2, ..., N}, including many objects, the normalized wave
function is a function of these variables ξi:

Ψnorm = Ψnorm(t, ξ1, ξ2, ..., ξN) (14.182)

(1a) If these degrees of freedom ξi are independent, then the
state is called separable and the wave function factorizes:

Ψnorm(t, ξ1, ξ2, ..., ξN) =
N∏
i=1

Ψnorm(t, ξi) (14.183)

Then the product rule can be applied, see e. g. (Kinzel, 2021,
section 3.1) or (Ballentine, 1998, p. 470). So, independent
states are a possible consequence of the SQ.

(1b) If these degrees of freedom ξi are not independent, then the
wave function does not factorize:

Ψnorm(t, ξ1, ξ2, ..., ξN) 6=
N∏
i=1

Ψnorm(t, ξi) (14.184)

By DEF, a state is entangled if and only if it is not separable.
So, entangled states are a possible consequence of the SQ.

Theorem 33 Derivation of quantum postulates

For the postulates of quantum physics
on the time evolution (postulate 1),



200 CHAPTER 14. DERIVATION OF QUANTUM POSTULATES

on Hilbert space (postulate 2),
on observables (postulate 3),
on possible outcomes of measurements (postulate 4),
on probabilities of these outcomes (postulate 5)
on expectation values of observables at mixed states (postulate
6),
on the symmetrization postulate (7),
on several degrees of freedom (section 14.10.1),
on several separable degrees of freedom (postulate on indepen-
dent states in section 14.10.1.1),
on several entangled degrees of freedom (section 14.10.1.2),
the following holds:

(1) The volume dynamics implies these postulates of quantum
physics. Thereby, objects at v = c and at v < c are included.
So, the postulates have become derived rules of quantum
physics.

(2) As matter forms from volume by a phase transition, see e. g.
Higgs (1964), Carmesin (2021a), the volume dynamics applies
to matter as well as to volume. So, the derived postulates apply
to objects of matter additionally.

(3) The usual advanced theories of quantum physics are based
on the postulates derived here, see chapter (15).

(4) So, volume dynamics implies quantum physics.



Chapter 15

Consequences of Quantum
Postulates

Idea: Based on the SQ, we derived the usual postulates of
quantum physics, QP, as a consequence (chapter 14). As a
matter of fact, these postulates have been used in order to derive
the essential advanced theories about QP. Thus, the essential
advanced theories of QP are consequences of the SQ.

Moreover, we explained the usual postulates of QP by the
dynamics of volume (part II). Accordingly, we explained the
advanced theories of QP by the dynamics of volume. In this
chapter, we summarize these consequences of the SQ:

15.1 Phenomena

Based on the postulates of quantum physics, QP, the Heisen-
berg uncertainty relation can be derived (Ballentine, 1998, sec-
tion 8.4), (Kumar, 2018, section 3.10). Moreover, based on the
postulates of QP, the states in atoms can be derived (Ballentine,
1998, chapter 10).

201
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15.2 Theories

15.2.1 Path integrals and semiclassical limit

Based on the postulates of QP, Feynman’s path integral can
be developed (Sakurai and Napolitano, 1994, section 2.6, Eq.
2.6.49), (Ballentine, 1998, section 4.8).

15.2.2 Gauge invariance and interaction

Based on the postulates of QP, the principle of gauge invariance
can be developed, and it can be applied in order to derive terms
describing fundamental interactions, (Sakurai and Napolitano,
1994, section 2.7).

Relativistic quantum physics: Based on the postulates of
QP, the relativistic quantum theory, including the Dirac equa-
tion, can be developed (Sakurai and Napolitano, 1994, C. 8).

Second quantization: We derived ladder operators in section
(14.5). That method is usually called second quantization, see
e. g. (Sakurai and Napolitano, 1994, p. 460). Here, we pro-
vide the dynamics of volume underlying the method of second
quantization.

Quantum electrodynamics: Using the method of second
quantization (section 14.5), the theory of quantum electrody-
namics or the quantum theory of the electromagnetic field can
be derived, see e. g. (Ballentine, 1998, chapter 19).

Quantum field theory: With an application of the method
of path integrals (section 15.2.1), the theory of quantum elec-
trodynamics or the quantum theory of the electromagnetic field
can be derived, see e. g. Weinberg (1996). Alternatively, we
can use the method of second quantization (section 14.5), in or-
der to derive quantum field theory, see e. g. Bialynicki-Birula
and Bialynicki-Birula (1975).



Chapter 16

On Bell’s theorem

Idea: Einstein et al. (1935) proposed that a physical theory
should be realistic and local. However, quantum physics ap-
pears to be nonlocal. Accordingly, Einstein et al. (1935) pro-
posed that quantum physics is incomplete and should be sup-
plemented by hypothetical hidden variables.

Bell (1964) provided a scheme in order to investigate such
hypothetical hidden variables. Accordingly, we summarize that
tool of investigation and the experimental results. Moreover,
we present implications of the dynamics of volume concerning
the issue of a realistic and local theory of nature.

16.1 On Bell’s inequality

We consider a system consisting of two components or particles,
see Fig. (16.1). Each component can be measured, whereby two
results are possible, called ±1. Each measurement device has a
set of orientations or directions ~a and~b of measured polarization
or spin. Each measurement depends on the orientations ~a and
~b and possibly on hidden variables λ:

A(~a, λ) = ±1 for particle 1 and (16.1)

B(~b, λ) = ±1 for particle 2 (16.2)

203
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DB
~b

DA

~a dobs = c ·∆tobs

Figure 16.1: Experiment providing the Bell inequality: The par-
ticle at the left is measured with the detector DA at a direction
~a of measured spin or polarization. The particle at the right is
measured with the detector DB at a direction ~b. Hereby, the
difference ∆tobs of the times at which the detectors DA and DB
execute their observations multiplied by c is smaller than the
distance dobs between the detectors.

The hidden variables correspond to some probability distribu-
tion ρ(λ). We introduce a correlation function as follows:

C(~a,~b) =

∫
A(~a, λ) ·B(~b, λ) · ρ(λ)dλ with (16.3)

ρ(λ) ≥ 0 and

∫
ρ(λ)dλ = 1 (16.4)

Instead of A(~a, λ) = ±1 and B(~b, λ) = ±1, we use a weaker
condition:

|A(~a, λ)| ≤ 1 and |B(~b, λ)| ≤ 1 (16.5)

We derive the absolute value of the following difference of cor-
relations with various arbitrary directions ~a, ~a′, ~b and ~b′ of the
detectors and with arbitrary signs ±:

|C(~a,~b)− C(~a,~b′)| (16.6)

=

∣∣∣∣∫ [A(~a, λ)B(~b, λ)− A(~a, λ)B(~b′, λ)]ρ(λ)dλ

∣∣∣∣ (16.7)

= |
∫

[A(~a, λ)B(~b, λ){1± A(~a′, λ)B(~b′, λ)}]ρ(λ)dλ (16.8)

−
∫

[A(~a, λ)B(~b′, λ){1± A(~a′, λ)B(~b, λ)}]ρ(λ)dλ | (16.9)
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In the above equation, the curly brackets are not negative.
Thus the absolute value is not decreased, if the products A(~a, λ)
·B(~b, λ) and A(~a, λ)B(~b′, λ) are replaced by one and the differ-
ence is replaced by a sum (see Eq. (16.5)). So we derive:

|C(~a,~b)− C(~a,~b′)| (16.10)

≤ |
∫

[1± A(~a′, λ)B(~b′, λ)]ρ(λ)dλ (16.11)

+

∫
[1± A(~a′, λ)B(~b, λ)]ρ(λ)dλ | (16.12)

=
∣∣∣2± [C(~a′,~b′) + C(~a′,~b)]

∣∣∣ (16.13)

In the above equation, the term 2 ± [C(~a′,~b′) + C(~a′,~b)] does
not become negative. Thus, it is not necessary to apply the
absolute:

|C(~a,~b)− C(~a,~b′)| ≤ 2± [C(~a′,~b′) + C(~a′,~b)] (16.14)

Next, in the above equation, the ± sign is chosen so that the
term ±[C(~a′,~b′) + C(~a′,~b)] ≤ 0 or ±[C(~a′,~b′) + C(~a′,~b)] =
−|C(~a′,~b′) + C(~a′,~b)|. Thus, the Eq. (16.14) implies:

|C(~a,~b)− C(~a,~b′)| ≤ 2− |C(~a′,~b′) + C(~a′,~b)| or (16.15)

|C(~a,~b)− C(~a,~b′)|+ |C(~a′,~b′) + C(~a′,~b)| ≤ 2 (16.16)

Hereby, we abbreviate the above sum by S:

S ≤ 2 with (16.17)

S = |C(~a,~b)− C(~a,~b′)|+ |C(~a′,~b′) + C(~a′,~b)| (16.18)

This relation is called Bell’s inequality, see e. g. Bell (1964),
Ballentine (1998).

In order to investigate nonlocal phenomena (section 16.1.1),
the distance dobs between the detectors DA and DB in Fig.
(16.1) is arranged sufficiently large: For it, the time difference
∆tobs of the times at which the detectors DA and DB in Fig.
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(16.1) execute their observations multiplied by c is smaller than
the distance dobs between the detectors. Thus, no communica-
tion at v ≤ c between the particles can generate an additional
correlation:

no communication at v ≤ c increases S (16.19)

16.1.1 Einstein locality principle

Einstein (1948) described the Einstein locality principle as fol-
lows, see also (Ballentine, 1998, p. 585), (Sakurai and Napoli-
tano, 1994, p. 241):

’Für die relative Unabhängigkeit räumlich distanter Dinge (A
und B) ist die Idee charakteristisch: äußere Beeinflussung von
A hat keinen unmittelbaren Einfluß auf B.’

’For the relative independence of spatially distant things (A and
B), the following idea is characteristic: An external influence
upon A has no unmediated influence upon B.’

Thereby, spatially distant things are spacelike, see e. g. (Hob-
son et al., 2006, p. 7), events with the negative difference, see
e. g. (Sakurai and Napolitano, 1994, p. 241):

∆s2 = c2∆t2 −∆x2 −∆y2 −∆z2 ≤ 0 or (16.20)

∆s2 = c2∆t2obs − d2
obs ≤ 0 is spacelike (16.21)

A phenomenon violating Einstein locality principle is usually
named nonlocal, see e. g. Vaidman (2019), (Scheck, 2013,
section 5.1).

16.2 Experimental test of Bell’s inequality

Idea: The Bell inequality (Eq. 16.18) provides the maximal
value of the sum S of correlations that can be explained by
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ΨA,+ΨB,−

ΨA,−ΨB,+

DB
~b

DA

~a

Figure 16.2: Wave function Ψ used for a test of Bell’s inequality,
see e. g. (Rosenfeld et al., 2017, Eq. 1), (Sakurai and Napoli-
tano, 1994, 3.10.1) or (Ballentine, 1998, Eq. 20.20): The linear
combination in Eq. (16.23) is used. Thereby, the product func-
tions ΨA,+ΨB,− (dotted) and ΨA,−ΨB,+ (dashed) are combined.

hidden variables. Thus, nonlocality can be tested by two obser-
vations with the following properties:

(1) Both observations are nonlocal according to Eq. (16.21).

(2) The results of both observations are evaluated so that the
sum S of correlations is provided.

Here, we summarize the results of such an experiment with
electrons, for more details see Rosenfeld et al. (2017).

Rosenfeld et al. (2017) execute observations at two electrons.
These have been placed at locations A and B at the following
distance:

dobs = 398 m (16.22)

The electrons have been prepared in a maximally entangled
state, see Fig. (16.2).:

Ψ =
ΨA,+ΨB,− −ΨA,−ΨB,+√

2
(16.23)

The observations start by the choice of the directions ~a of de-
tector DA and~b of detector DB in Fig. (16.2). The observations
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end when these detectors send the observed signals towards fur-
ther devices. The time between the start and end of the obser-
vations is as follows:

∆tobs = 120 ns (16.24)

Thus, the experiment is nonlocal according to Eq. (16.21):

c ·∆tobs = 36 m > dobs = 398 m (16.25)

In order to test Bell’s inequality, two orthogonal directions ~a
and ~a′ are chosen, two orthogonal directions~b and~b′ are selected
at the following angles (Rosenfeld et al., 2017, p. 2):

e.g. α = 90o, α′ = 0o, β = 45o, β′ = −45o (16.26)

Hereby, we use polar coordinates, so that α′ = 0o corresponds
to the unit vector ~ex in the direction of the x-axis. Accordingly,
α = 90o corresponds to the unit vector ~ey in the direction of the
y-axis.

According the hidden variables, Bell’s inequality should hold,
so that the sum S is limited from above by two:

S ≤ 2 with (16.27)

S = |C(~a,~b)− C(~a,~b′)|+ |C(~a′,~b′) + C(~a′,~b)| (16.28)

In this case, the corresponding quantum correlations can be
evaluated with help of scalar products:

C(~a,~b) = cos 45o =
1√
2

= C(~a′,~b) = C(~a′,~b′) (16.29)

and C(~a,~b′) = cos 135o =
−1√

2
(16.30)

Altogether, the above sum of quantum correlations is larger
than two:

S =

∣∣∣∣ 1√
2
− −1√

2

∣∣∣∣+
2√
2

=
4√
2

= 2
√

2 > 2 (16.31)
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ΨA,~ey,−ΨB,~ey,+

DB
~b

DA

~a

Figure 16.3: An observation at DA with corresponding to the
operator Â~ey can provide the result A,−, see Fig. (16.2). As a

result, the entangled wave function Ψ is projected to the Â~eyΨ =
−ΨA,~ey,−ΨB,~ey,+√

2
. Thereby, the dotted summand in Fig. (16.2)

vanishes.

The experiment provides the following value of the sum, see
Rosenfeld et al. (2017):

Sobs = 2.221± 0.033 (16.32)

Thus, Bell’s inequality is violated by an amount of seven stan-
dard deviations.

Thus, the observed correlations are larger than the correla-
tions that can be provided by hidden variables. Hereby, the
additional correlations cannot be provided by a physical object
that propagates slower than the velocity of light, as the two ob-
servations are nonlocal according to Eq. (16.21). Thus, a kind
of communication at v > c between the electrons took place.
Thence, a kind of nonlocality has been observed, see section
(16.1.1). Note that many experiments have been executed that
violate Bell’s inequality, see e. g. Aspect et al. (1982), Hensen
et al. (2015). Especially interesting is a violation of Bell’s in-
equality at cosmic scales, see e. g. Handsteiner et al. (2017).
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16.3 Explanation by the dynamics of volume

The entangled electrons have the common wave function Ψ in
Eq. (16.23). As the electrons are quantum objects, they fulfill
the SEQ.

By chance, one of the detectors measures first. For instance,
it is detector DA. It observes in one of the two directions ~ex
or ~ey (Eq. 16.26). In the experiment, the direction is chosen
at random according to a number generator. For instance, the
direction ~ey is selected. Hereby, the result at DA might be −.

Thereby, the corresponding operator Â~ey acts upon the wave
function Ψ. As a result, at DA, the wave function is polarized
according to −~ey (Eq. 16.23):

Â~eyΨ =
−ΨA,~ey,−ΨB,~ey,+√

2
(16.33)

Accordingly, the wave function in Eq. (16.23) becomes the pro-
jected wave function in Eq. (16.33), see Fig. (16.3).

The change of the solution Ψ of the SEQ towards the solu-
tion Â~ey requires some duration ∆ttransient for the transient phe-
nomenon, see e. g. Bergin and Collins (1951). The duration
∆ttransient is limited from below by the distance dobs between
two detectors observing the transient phenomenon, divided by
the highest possible velocity vdyn available by the dynamical
equation, the SEQ:

∆ttransient ≥
dobs
vdyn

(16.34)

However, the SEQ provides no restriction to the highest ve-
locity vdyn. As a consequence, the transient time tends to zero:

lim
vdyn→∞

∆ttransient ≥
dobs
vdyn

= 0 (16.35)

Consequently, the pair of entangled electrons change their
solution Ψ of the SEQ towards the solution Â~aΨ within a neg-
ligible duration of the transient phenomenon ∆ttransient. This
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fully explains the kind of communication at v > c that causes
the value S > 2 of the indicator, see section (16.3.1).

16.3.1 Laplace transforms describe transients

Idea: A transient phenomenon starts to form at a time at which
the system is changed by an observation or by any other exter-
nal influence. If the system is described by a linear differen-
tial equation including phase velocities, then the transients are
formed as a linear combination of solutions propagating at the
phase velocity. That linear combination can be described by
the Laplace transform, see e. g. Schiff (1991), Zamorano and
Campos (2007), Kim et al. (2018) or Geers and Sobel (1971).

In general, the Laplace transform provides a transformation
of a function f(t) of time to a domain of possibly complex tran-
sient frequencies s = x+ i · y as follows, see e. g. (Schiff, 1991,
Eq. 1.1):

F (s) = L(f(t)) =

∫ ∞
0

e−s·t · f(t)dt (16.36)

= lim
t′→∞

∫ t′

0

e−s·t · f(t)dt (16.37)

If a function f(t) is defined at the open interval [0,∞[, then it
can be described by the inverse transform L−1(F (s)), see e. g.
(Schiff, 1991, Eq. 4.2):

f(t) =
1

2π
·
∫ ∞
−∞

ex·t · eiy·tF (x, y)dy for t > 0 (16.38)

As y is an integration variable, it can be renamed by ω. Ac-
cordingly, y can be interpreted by the circular frequency of the
RGW:

f(t) =
1

2π
·
∫ ∞
−∞

ex·t · eiω·tF (x, ω)dω for t > 0 (16.39)

Accordingly, the above representation can be interpreted or
used as follows:
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(1) The transient function f(t) describes a transient effect or
transient phenomenon of a solution of the SEQ.

(2) The circular frequencies ω describe the RGW.

(3) Hereby, each circular frequency ω corresponds to a wave
number |~k| with a phase velocity vp as follows:

vp =
ω

|~k|
or ω = vp · |~k| (16.40)

The wave number is nonzero, as the wavelength λ = 2π

|~k|
is lim-

ited by the light horizon. As vp is unlimited and |~k| is nonzero,
the circular frequency ω is unlimited. As a consequence, the
transform F (x, ω) can be the function F (x, ω) = e−x·t. Thus,
the transient function f(t) in Eq. (16.39) is as follows:

f(t) =
1

2π
·
∫ ∞
−∞

ex·t · eiω·te−x·tdω or (16.41)

f(t) =
1

2π
·
∫ ∞
−∞

eiω·tdω = δ(t) (16.42)

Hereby, δ(t) represents the δ distribution. Thus, the transient
function f(t) is nonzero only at t = 0. Hence, the transient
phenomenon can take place instantly. Thereby, the potential φL
drives the transient phenomenon, and as the circular frequencies
are unlimited, the process takes place as fast as possible. Thus
the transient phenomenon takes place instantly.

(4) Thereby, the velocity of the propagation of the transient
phenomenon in spacetime is described by the unlimited phase
velocity vp, so that the distance represents no limitation. We
summarize our results:

Proposition 6 Velocity of transient phenomenon

(1) If a first solution of the SEQ changes to a second solution
of the SEQ, then this change takes place by a transient phe-
nomenon.
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(2) The time evolution of the transient phenomenon is described
by a transient function f(t). As a result of the unlimited phase
velocity vp, the transient function f(t) can become a delta - dis-
tribution. Thus, the transient effect can take place instantly.
As the transient phenomenon is driven by the potential, it rakes
place in the fastest possible manner: instantly.

Using PROP (6) and THMs (5, 12), we derive the explana-
tion of the observed nonlocality, see section (16.2).

Theorem 34 Explanation of nonlocality

If detectors DA and DB executes an observations according to
the condition in part (1), then the results in parts (2-7) hold:

CONDITION:

(1) The detector DA executes an observation with an observable
A and an operator Â at a wave function Ψ. The detector DB

at a distance dobs executes an observation at a duration ∆tobs
after the observation executed by DA. Thereby, DB executes
its observation with an observable B and an operator B̂ at a
transformed version Ψtransf = ÂΨ of the same (or entangled)
wave function Ψ.

CONSEQUENCES:

(2) Before the observation executed by DA, the wave function
Ψ was a first solution of the SEQ.

(3) The observation executed by DA changes the wave function
Ψ to a second solution Ψtransf of the SEQ. This change takes
place by a transient phenomenon.

(4) The time evolution of the transient phenomenon can be de-
scribed by a function f(t). That function can be expressed with
help of the Laplace transform in terms of a linear combination
of circular frequencies ω as follows:

f(t) =
1

2π
·
∫ ∞
−∞

ex·t · eiω·tF (x, ω)dω for t > 0 (16.43)
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(5) Hereby, each circular frequency ω corresponds to a wave
number |~k| with a phase velocity vp as follows, see THM (5,
part (12)) and THM (12):

vp =
ω0

|~k|
+ vg is unlimited from above (16.44)

In this manner, the phase velocity vp of the SEQ determines the
evolution of the transient phenomenon in spacetime. As a con-
sequence, the duration ∆ttransient of the transient phenomenon
is unlimited from below:

∆ttransient =
dobs
vp

is unlimited from below (16.45)

(6) Consequently, the nonlocality observed in section (16.2) is
explained by the rapid transient phenomenon in part (5). The
rapid transient effect is enabled by the unlimited phase velocities
in THMs (5, 12). The high phase velocities become possible in
the dynamics of volume inherent to the RGW in chapters (7,
8), see THM (12, parts (3b,4b) and corollary (8).

Altogether, the duration ∆ttransient of the transient effect is
shorter than the duration of both observations ∆tobs.

(7) As the definition of the Einstein locality principle is ap-
plicable to an unmediated dynamics only, see section (16.1.1),
and since the observed nonlocality (section 16.2) is achieved or
mediated by the dynamics of volume, the Einstein locality prin-
ciple cannot be applied. Thus, the observed nonlocality does not
violate the Einstein locality principle, as the premise of that
principle (unmediated dynamics) is not fulfilled.

(8) The volume mediates nonlocality as follows: Two wave func-
tions at a distance (see e. g. Figs. 16.1, 16.2, 16.3) are rates
ε̇L of volume. Between the two wave functions, there is volume.
Within it, the transient phenomenon can take place.



Chapter 17

Mapping theorem

Ideas: Firstly, in relativity, a volume dV can be expressed in
terms of the metric tensor gij, (Hobson et al., 2006, section
2.14). Thus, we derive the dynamics of the rate ε̇L and of the
proportional wave function Ψ as a function of the metric tensor.

Secondly, Einstein (1915) proposed the Einstein field equa-
tion, EFE, in order to describe the dynamics of spacetime. That
dynamics has been expressed in terms of the Ricci flow, describ-
ing the dynamics of the metric tensor gij, Anderson (2004),
Balmer (2021). Thus, we derive the dynamics of the rate ε̇L
and of the proportional wave function Ψ as a function of the
Ricci flow.

Thirdly, we provide the relation between the dynamics of the
EFE and of the Ricci flow on the one hand and the dynamics
of the rate ε̇L and of the proportional wave function Ψ on the
other hand.

Theorem 35 Mapping of rates, tensors and Ricci flow

(1) In a D dimensional metric space with a metric tensor gij
with a determinant |gij|, a volume element has the following
volume, (Hobson et al., 2006, section 2.14):

dVL =
√
|gij| · Πk=D

k=1 dxk (17.1)
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In a local coordinate system with a diagonal metric tensor, the
volume is as follows:

dVL =
√

Πk=D
k=1 |gkk| · Π

k=D
k=1 dxk (17.2)

(2) The additional volume is the following function of the met-
ric in curved space and the corresponding metric gij,f lat in flat
space, see chapter (7):

δV =
√
|gij| · Πk=D

k=1 dxk −
√
|gij,f lat| · Πk=D

k=1 dxk or(17.3)

δV =

(√
|gij| −

√
|gij,f lat|

)
· Πk=D

k=1 dxk (17.4)

(3) The relative additional volume is the following function of
the metric in curved space and the corresponding metric gij,f lat
in flat space, see chapter (7):

εL =
δV

dVL
and (17.5)

εL =

√
|gij| −

√
|gij,f lat|√

|gij|
or (17.6)

εL = 1−
√
|gij,f lat|√
|gij|

(17.7)

(3a) If the metric tensors are represented in a diagonal form,
and if the metric tensor of flat space and of curved space differ
in one direction j only, then the relative additional volume is
unidirectional, see chapters (7,10):

gii = gii,f lat for i 6= j (17.8)

εL,jj = 1−
√
|gjj,f lat|√
|gjj|

(17.9)
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(3b) If the metric tensors are represented in a diagonal form,
and if the nonzero elements of the metric tensor are equal, then
the relative additional volume is isotropic, see chapters (7,10):

gii = gii,f lat for all 1 ≤ i ≤ D (17.10)

εL,iso = 1−
√
|gjj,f lat|D√
|gjj|D

(17.11)

The isotropic rate εL,iso can also be expressed in a less specific
manner by εL.

(4) The rate of relative additional volume is the time derivative
of the relative additional volume, see chapter (7):

∂

∂τ
εL = ε̇L and (17.12)

∂

∂τ
εL,jj = ε̇L,jj (17.13)

(5) According to the chain rule, the rate of relative additional
volume is the following function of the metric tensor, C. (7):

ε̇L = − ∂

∂τ

√
|gij,f lat|√
|gij|

and (17.14)

ε̇L =

√
|gij,f lat|

2
√
|gij|

3 ·
∂

∂τ
|gij| (17.15)

(5a) If the metric tensor is in a diagonal form, then the rate in
Eq. (17.15) is as follows, see parts (1) and (5):

ε̇L =

√
Πj=D
j=1 |gjj,f lat|

2
√

Πj=D
j=1 |gjj|

3 ·
∂

∂τ
Πj=D
j=1 |gjj| (17.16)

(5b) If the metric tensor is in a diagonal form with positive gjj,
then the rate in (5a) is as follows:
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ε̇L =

√
Πj=D
j=1 gjj,f lat

2
√

Πj=D
j=1 gjj

3 ·
∂

∂τ
Πj=D
j=1 gjj︸ ︷︷ ︸

poly−directional change

(17.17)

In general, the product Πj=D
j=1 gjj represents a metric change in

D directions. Accordingly, the product is poly-directional.
The time derivative characterizes a change. Correspondingly,
∂
∂τΠj=D

j=1 gjj describes a poly-directional change.

(5c) In order to provide a mapping to the Ricci flow, the rate
in (5b) is expanded by arbitrary fixed parts of line elements dx2

j

as follows:

ε̇L =

√
ΠD
j=1gjj,f lat

2
√

ΠD
j=1gjj

3 ·
1

ΠD
j=1dx

2
j

∂

∂τ
ΠD
j=1gjjdx

2
j (17.18)

The product rule provides the following rate:

ε̇L =

√
ΠD
j=1gjj,f lat

2
√

ΠD
j=1gjj

3

1

ΠD
j=1dx

2
j

D∑
k

Sk
∂

∂τ
gkkdx

2
k (17.19)

Hereby, for each direction k, the factor Sk summarizes the fac-
tors of the respective subspace orthogonal to direction k:

Sk = ΠD
j=1,j 6=kgjjdx

2
j (17.20)

(5d) In the case of a unidirectional rate of relative additional
volume in a direction i, the time derivative is nonzero for direc-
tion i only. So among the factors Sk, only Si is multiplied with
a nonzero derivative. Thus, the factor Si and the derivative can
be extracted from the sum in Eq. (17.19):

ε̇L,ii =

√
ΠD
j=1gjj,f lat

2
√

ΠD
j=1gjj

3

Si
ΠD
j=1dx

2
j

∂

∂τ
giidx

2
i (17.21)
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In the context of the Ricci flow, (Balmer, 2021, section 2), the
line element ds2 is named g, (Hobson et al., 2006, section 2.11),
ds2 =

∑D
k,j gkjdxkdxj = g. In the case of unidirectional forma-

tion of volume, the time derivative of g reduces to the term
giidx

2
i in the above equation:

ε̇L,ii =

√
ΠD
j=1gjj,f lat

2
√

ΠD
j=1gjj

3

Si
ΠD
j=1dx

2
j

∂

∂τ
gi with (17.22)

g =
D∑
k

gkkdx
2
k for diagonal gkj (17.23)

g =
D∑
k,j

gkjdxkdxj (17.24)

gi = giidx
2
i for unidirectional gkj (17.25)

The derivative of the line element is identified with the Ricci
flow as follows, (Anderson, 2004, Eqs. 4-6), (Balmer, 2021,
section 2):

∂

∂τ
g = −2 ·Ricg with (17.26)

Ricg is the Ricci tensor of g (17.27)

Thus, the rate in Eq. (17.22) is expressed as a function of the
Ricci tensor:

ε̇L,ii = −

√
ΠD
j=1gjj,f lat√
ΠD
j=1gjj

3

Si
ΠD
j=1dx

2
j

·Ricgi (17.28)

(6) The dynamic volume and the Ricci flow are related as fol-
lows:

(6a) The rate of unidirectional relative additional volume can
be expressed as a function of the Ricci flow at a unidirectional
line element gi, see part (5d).
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(6b) The rate of a poly-directional flow, see part (5b), is char-
acterized by a product of D tensor elements, ∂

∂τΠj=D
j=1 gjj. In

contrast, the Ricci flow and the line element g are character-
ized by tensor elements that are not multiplied with each other.
Thus, the rate of relative additional volume is more complex
than the Ricci flow. This complexity of the rate of relative ad-
ditional volume is a consequence of the fact that the volume is
characterized by a product of D tensor elements, see part (1).

(6c) Altogether, the dynamics of the dynamical volume, DV, can
be derived on the basis of the EFE, see the cognitive map in Fig.
(12.3). Thereby, the DV is more complex than the Ricci flow
or the curvature tensor underlying the EFE. That additional
complexity is essential for the unification of gravity, spacetime
and quantum physics.

(6d) The relation between DV and the Ricci flow can be calcu-
lated by using parts (1), (2) and (3).

(6e) The relation between DV and the EFE can be calculated
by using parts (1), (2) and (3) and by expressing the EFE in
terms of the metric tensor. For it, the Ricci tensor is expressed
in terms of the metric tensor, (Landau and Lifschitz, 1971, §
101), the Ricci scalar is expressed as a product of Ricci tensor
and metric tensor, (Landau and Lifschitz, 1971, Eq. 92.12),
and the nonhomogeneous EFE is expressed in terms of the Ricci
tensor, the Ricci scalar and the energy momentum tensor, (Lan-
dau and Lifschitz, 1971, Eq. 95.5), and the homogeneous EFE
is expressed in terms of the Ricci tensor and the Ricci scalar.



Chapter 18

Interpretation

18.1 Role of paradoxes

A paradox is a statement that is in contrast to our everyday ex-
perience, and that tries to point at the complexity of phenom-
ena, reflecting just a specific form of truth, Brockhaus (1998).
In physics, a paradox is a phenomenon that seems or appears
to be in contrast to laws of physics, Brockhaus (1998). In quan-
tum physics, there are several paradoxes, Einstein et al. (1935),
Aharonov and Rohrlich (2005) (Scheck, 2013, p. 720), Hobson
(2017), (Kumar, 2018, p. 93, 181). We treat a double slit para-
dox that has been regarded as ’all of the mystery of QP’, see
(Feynman, 1965, p. 130).

18.2 Delayed choice experiment

18.2.1 Experiment

Wheeler (1984) proposed the delayed choice experiment: A
source emits single photons. So there is at most one photon
in the experiment. That photon can pass a double slit, Fig.
(18.1). Then it can hit a screen. However, after the photon
passed the double slit, the experimenter can make the delayed
choice to remove the screen, before the photon reaches the
screen. In that case, the photon can reach one of two detectors
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S

D1

D2

screen

Figure 18.1: Scheme of delayed choice experiment: The source S
emits single photons. Dotted lines indicate some wave fronts.
While the photon is between double slit and screen, the screen
can be removed. In that case, the detectors D1 and D2 can
detect the photon.

D1 or D2. The experiment is repeated many times, and the pat-
tern of photons hitting the screen is stored and displayed. For
it, the screen can be a photographic plate or a camera sensor.

18.2.2 Observation

In the above experiment, the following should be observed:

(1) At the screen, many photons are detected and the diffraction
pattern of the double slit forms, see Fig. (18.1).

(2) At each detector and at an instant of time, a photon can
only be detected, if the screen is removed, and if no photon is
detected at the other detector.

(3) At both detectors, the probability of detecting a photon is
proportional to the absolute square of the wave function |Ψ|2.
Paradox and solution:

If the detector D1 detects a photon, then the following is as-
sumed as a result of the basic concept of geometrical optics,
see e. g. (Born and Wolf, 1980, C. III):

Basic concept of geometrical optics: The photon passed
the lower slit in Fig. (18.1), without passing the upper slit.
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However, if the screen would not have been removed, then
that photon would have contributed to the diffraction pattern.
This is explained with the improved concept of electromagnetic
waves, , see e. g. (Born and Wolf, 1980, C. I):

Improved concept of electromagnetic waves: The light
passed both slits in Fig. (18.1).

However, there is only one photon in the experiment at a time.
This is verified by the fact that only one of the detectors can
detect a photon at a time.

Advanced concept of the postulates of quantum physics:
The photon is observed at the screen or at one of the detectors
in Fig. (18.1). Thereby, the postulates do not explain the prop-
agation of the photon between double slit and screen or between
screen and detector. This view corresponds to the Copenhagen
interpretation, see e. g. Heisenberg (1958).

According to the other advanced concept of relativity, the fol-
lowing is expected:

Advanced concept of relativity: No physical effect should
propagate faster than the velocity of light c in natural volume.

However, if the wave function arrives at both detectors, and if
D1 detects the photon, then the wave function vanishes at D2

immediately, so that D2 does not detect a second photon at the
same time. Such an immediate vanishing of the wave function
is sometimes called collapse of the wave function or state
vector, see e. g. (Isham, 1995, p. 240) or Weinberg (2017).

Altogether, there is an apparent paradox: The advanced con-
cept of relativity cannot explain all observations. The advanced
concept of quantum postulates can explain all results detected
here - however, quantum postulates do not explain essential
achievements of relativity, and quantum postulates do not ex-
plain how a physical object achieves an immediate change at a
distance.
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Advanced concept of dynamic volume, DV: DV explains
the paradox: The wave function Ψ of an object represents the
rate of relative additional volume. It propagates through both
slits. If the screen is not removed, then the object is observed
with the correct probability |Ψ|2(~r), according to the diffraction
pattern. If the screen is removed, and if the object is observed
at one of the two detectors, then Ψ is transformed to that so-
lution of the SEQ, that has the probability one at that detec-
tor. That transformation takes place according to the transient
phenomenon at phase velocities that are above (in an unlimited
manner) the velocity of light c in natural volume. As a con-
sequence, the object is not detected at the other detector. So,
DV explains the delayed choice experiment.

Moreover, DV causes the curvature of spacetime (C. 7, 8, 9).
Furthermore, the DV causes the expansion of space since the
Big Bang (C. 5, 12, 20, 21, 22). So, DV explains the results of
GR and beyond (C. 12, 20, 21, 22).

18.2.3 Real experiment

Jaques et al. (2007) performed a slightly modified delayed choice
experiment: Mach-Zehnder interferometer has two paths. An
electro-optical modulator is rapidly controlled by a voltage and
provides a delayed choice. The observations are as in section
(18.2.2).

18.2.4 Truths learnt in a delayed choice experiment

As elaborated in section (18.1), one or more specific forms of
truth can be learned from a paradox in physics. What are these
truths in the delayed choice experiment?

Firstly, a wrong assumption is that the photon would pass
one slit only. Instead, the wave function Ψ does always describe
the deterministic and the probabilistic property of quantum
physics: The wave function describes the deterministic prop-
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agation according to the SEQ. And the wave function describes
the probabilistic occurrence of the whole object proportional to
|Ψ|2 and according to section (14.6.1).

Secondly, if a photon is detected by D1, then no photon is
detected by D2 at the same time, see item (2) in section (18.2.2).
Thus, the two possibly detected events ’detection in D1’ and
’detection in D2’ are not independent of each other. Thus, the
wave function Ψ or state |Ψ〉 is not separable. Thence, the state
|Ψ〉 is entangled, see Sanz et al. (2016).

Thirdly, in the delayed choice experiment, the mechanism by
which nature provides entanglement is explained by the rapid
transient phenomenon of the dynamics of volume. Hereby, it is
essential that this rapid transient phenomenon is derived from
first principles only. For it, no hypothesis or fit is used.

Fourthly, the observed nonlocality does not violate Einstein’s
principle of locality: The dynamics of volume is derived from
fundamental principles of physics (C. 2), and it explains the
observed nonlocality. Hereby, the dynamics of volume mediates
physical processes as follows: A physical process takes place in
volume, and the wave function of that process is the rate of
relative additional volume. As Einstein formulated his locality
principle only for unmediated processes, his locality principle is
not applicable. Thus, his locality principle is not violated.

18.2.5 All of the mystery of QP

Feynman (1965) wrote (p. 130) that the double slit experiment
contains ’all of the mystery of quantum mechanics’. This mys-
tery essentially is the secret of the mechanism of nonlocality.
In particular, the entanglement of distant objects or quantities
provides nonlocality, Vaidman (2019). The dynamics of volume
explains the double slit experiment and thereby solves Feyn-
man’s ’mystery of quantum mechanics’.
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18.3 DV overcomes Copenhagen interpreta-

tion

Idea: The DV explains the essential paradoxes of QP. Thus,
the DV should overcome interpretations of QP that have been
used during the era at which there was no sufficient explanation
of quantum paradoxes, see e. g. Einstein et al. (1935), Feynman
(1965), Aharonov and Rohrlich (2005), Hobson (2017), Wein-
berg (2017).

The paradoxes of QP have been interpreted in various man-
ners, see e. g. Hobson (2017). Thereby, the Copenhagen inter-
pretation is regarded as the standard textbook interpretation,
see (Hobson, 2017, p. 263). In that interpretation, a quantum
state or wave function does not represent objective reality. In-
stead, it represents only our knowledge of reality. Hobson (2017)
summarizes (p. 197): ’The Copenhagen interpretation is an ef-
fort to fix quantum physics by interpreting it non-realistically.’

The DV is derived form fundamental principles of physics
only, without using any hypothesis, see part (II). As a conse-
quence, the dynamics of volume explains the essential paradox
of QP, see section (18.2). Moreover, the dynamics of volume
explains nonlocality in nature, see C. (16). Furthermore, the
dynamics of volume explains mediation in nature, see C. (14,
16). Thereby, the DV shows that Einstein’s principle of locality
is not violated, see C. (16). In this manner, the DV overcomes
the non-realistic Copenhagen interpretation as follows: The DV
provides a derived nonlocal explanation that does not violate
Einstein’s principle of locality.



Part IV

Basic Dynamics of Spacetime
& Gravity
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Chapter 19

Derivation of Dark Energy

Idea: We derived the dynamics of the locally formed volume,
LFV, in THMs (15, 18). That dynamics should also provide the
formation of a present-day probe volume dV0 at an arbitrary
location R0. That process of formation took place since the Big
Bang or during the Hubble time tH0

(Fig. 19.1):

dV0 forms during tH0
≈ t0 (19.1)

As that dynamics is related to the field G∗ = GM/R2, it
should provide the energy density uvol = ρvolc

2 of volume. We
analyze that process progressively in three steps:

(1) In an ideal process, we derive uvol in a universe consisting
of volume only, see chapter 19.

(2) We derive uvol in a universe consisting of volume and a
homogeneous density of matter as well as radiation.

(3) We derive uvol in a universe consisting of volume and a
homogeneous and heterogeneous density of matter as well as
radiation, see chapter (21).

19.1 Nature of density of volume

During the expansion of space since the Big Bang, the amounts
of volume increase. As volume propagates at v = c, it is quan-
tized (chapter 4). A quantum of volume is at its lowest energy
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state, the zero-point energy, ZPE. The reason is as follows: Oth-
erwise, a newly formed quantum of volume could reach a lower
energy state and emit the energy difference, whereby that dif-
ference could violate the law of energy conservation, which is
applicable here according to the Noether (1918) theorem. Thus,
the energy of volume is the energy of zero-point oscillations,
ZPOs1.

19.2 uvol in a universe of volume

Idea: As a first and ideal case, we analyze the process of for-
mation of volume, and we derive the energy density uvol in a
universe that consists of volume only.

19.2.1 Homogeneous, isotropic and constant volume

In the present case, there is no radiation or matter. Thus, the
system is homogeneous and isotropic. Accordingly, we derive
the homogeneous density ρvol,h. of the volume.

19.2.2 Separation of space and time

In the constant and homogeneous density ρvol,h. of the volume
modeled here, the time increases at a homogeneous and constant
rate2. Accordingly, we investigate space and time separately.

19.2.3 Formation of volume by volume

An incremental volume dVj has the dynamic mass dMj:

dMj = dVj · ρvol,h. (19.2)

According to the law of unidirectional formation of volume,
see THM (15), the dynamic mass dMj exhibits a field at the

1Wavelengths of these ZPOs have been derived in more detail in Carmesin (2018c,b,
2019b, 2021b).

2Of course, in the vicinity of a local mass, the rate of increase of time is changed. But
there is no special local mass in the considered system with homogeneous density.



19.2. UV OL IN A UNIVERSE OF VOLUME 231

probe volume dV0 at a distance R. Thus, the rate of formed
volume is proportional to the field:

dε̇L(R, dMj) =
|d~G∗j |(R)

c
=
G · dMj

R2 · c
(19.3)

Hereby, we chose a minimal possible dMj, so that we know

that dMj is quantized, see chapter (4). Thereby, the field ~G∗

cannot be measured and remains uncertain, similar to the un-
certainty relation, see Heisenberg (1927), PROP (4) in C. (10).
Accordingly, we denote the above rate by dε̇L,G∗ uncertain. We
summarize:

Proposition 7 Rates emitted by volume

(1) A dynamic mass of volume dMj causes a rate at a distance
R, that can be calculated as follows:

dε̇L,G∗ uncertain(R, dMj) =
G · dMj

R2 · c
(19.4)

(2) Photons and matter emit fields that can in principle be com-
pensated by fields of other photons or particles of matter. Many
photons or particles of matter can be described by a homoge-
neous density plus a heterogeneity. The homogeneous density
does not cause a gravitational field, see chapter (20).

(3) Correspondingly, photons can be localized in an optical res-
onator, for instance. And matter can be localized in an electrical
or gravitational field, for instance. In contrast, volume propa-
gates at v = c and cannot be localized in such devices.

In the above three cases, three-dimensional volume and its en-
ergy density are analyzed based on our very general four prin-
ciples in chapter (2). Accordingly, our results hold for a large
variety of cosmological models, see e. g. Hobson et al. (2006),
Carmesin (2019b).
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ρvol

dR

R dMj

dVj

R0

dV0

dε̇L
RGWvol

dε̇L
RGWvol

dε̇L

RGWvol

Figure 19.1: The density ρvol in an area at a distance R from
R0 has a j − th dynamic mass dMj. It generates rates dε̇L =
dε̇L,G∗ uncertain(R, dMj) propagating towards all directions in the
same manner.

19.2.4 RGWs propagating towards R0

The rate gravity waves RGWvol formed by a j−th dynamic mass
according to Eq. (19.3) steadily propagate towards all directions
in an isotropic manner, see section (19.2.1). In this section,
we integrate those RGWvol that steadily propagate towards the
volume dV0 (Fig. 19.1, Eq. 19.1).

19.2.4.1 Rates arriving at R0

Idea: We integrate all rates that steadily arrive at dV0 (Fig.
19.1, Eq. 19.1).

Shell around R0: The dynamic masses dMj at a distance R from
R0 constitute a shell with center R0 and with a distance R from
R0, and with a thickness dR, so that the mass of the shell is the
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sum of the masses dMj in the shell, see Fig. (19.1):

dM(R) =
∑

j, Rj∈shell

dMj (19.5)

In the present analysis of the formation of LFV in a universe
consisting of volume only, the FDA becomes exact and the in-
crements dL and dR are equal. Accordingly, also the squares
of the rates of relative and normalized LFV are equal, see Eq.
(9.41). Hereby, the sign of these rates describes the difference
between a Big Bang and a conceivable Big Crunch, see Good-
stein (1997).

At R0, each of these masses causes the rate in Eq. (19.4).
These rates represent the volume δV formed per volume dV

and per time δt. As volume is an additive quantity, the sum of
these rates dε̇L,G∗ uncertain(R, dMj) arrives at R0, see Fig. (19.3):

dε̇L,G∗ uncertain(R, dM(R)) =
∑
j

dε̇L,G∗ uncertain(R, dMj) (19.6)

dε̇L,G∗ uncertain(R, dM(R)) =
1

c
· G · dM(R)

R2
(19.7)

In the following, we abbreviate dε̇L,G∗ uncertain by dε̇:

dε̇(R, dM(R)) =
1

c
· G · dM(R)

R2
(19.8)

Mass of shell around R0: That mass dM(R) is equal to the prod-
uct of the density ρvol,h. and the volume dV = 4π · R2 · dR of
the shell, see Fig. (19.1):

dM(R) = ρvol,h. · 4π ·R2 · dR (19.9)

Rate caused by shell and arriving at R0: We insert the mass in
Eq. (19.9) into Eq. (19.8):

dε̇(R, dM(R)) =
1

c
· G · ρvol,h. · 4πR

2dR

R2
(19.10)



234 CHAPTER 19. DERIVATION OF DARK ENERGY

ρvol

RH0

R0
dV0

dR

Figure 19.2: Ball with centerR0 and Hubble radiusRH0
: That ball

is partitioned into shells with center R0 and thickness dR. Each
shell causes the same rate (dashed), dε̇(R, dM(R)), arriving at
R0.

We cancel R2. So, we derive the rate that is caused by the shell
at R, with a thickness dR, whereby the rate arrives at R0:

dε̇(R, dM(R)) =
G · ρvol,h. · 4π

c
· dR (19.11)

As the mass dM(R) is a function of the density and dR, we
write the above Eq. accordingly:

dε̇(dR, ρvol,h.) =
G · ρvol,h. · 4π

c
· dR (19.12)

19.2.4.2 Invariance of rates dε̇(dR, ρvol,h.)

The above rate in Eq. (19.11) exhibits the following property:
Each shell around R0 with thickness dR causes the same rate
dε̇(R) that arrives at R0, irrespective of the radius R of the
shell, see Fig. (19.2). Thus, the rate per dR of the rates dε̇(R)
is a constant K0:

dε̇(dR, ρvol,h.)

dR
=

4πG · ρvol,h.
c

= K0 (19.13)
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That rate per dR is a function of the dynamic density ρvol,h. of
volume and of the universal constants G and c only.

19.2.4.3 Integration of dε̇(R)

In order to integrate the rates dε̇(dR, ρvol,h.) of the rate gravity
waves RGWvol arriving at R0, we analyze the properties of these
waves RGWvol:

(1) The waves RGWvol propagate at v = c, whereby they are
not disturbed by any other object, see PROP (7) in chapter
(19).

(2) The waves RGWvol have formed since the Big Bang in the
shells around R0 described above, see Fig. (19.2).

(3) The largest light-travel time of the RGWvol arriving at t0 is
the Hubble time3 tH0

= 1/H0.

(4) Thus, the largest radius of the light-travel distance of the
shells described above is RH0

= tH0
· c, the Hubble radius.

(5) Accordingly, if we integrate the above shells, then the upper
limit of the integration is RH0

.

(6) If we integrate the above shells, then the lower limit of
integration is a length near the Planck length LP . Planck (1899)
introduced LP = 1.616 · 10−35 m. That length is negligible here
at a very good approximation, and it is set to zero.

(7) The upper limit of the integration of rates provides the sum
of all rates that steadily arrive at R0. Accordingly, we mark it
by ε̇at R0

.

According to the above properties of the RGWvol, the integra-
tion of the shells is as follows, see Eq. (19.11):∫ ε̇at R0

0

dε̇ =
4π ·G
c
·
∫ RH

0

ρvol,h.dR (19.14)

3The Hubble time describes the age of the universe at a relatively high precision, see
e. g. Planck-Collaboration (2020), Carmesin (2019b).
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δV (tH0
)

δt

δV
δt

tH0
tp0

ε̇at R0
· dV0

tH0 todayBig Bang

Figure 19.3: Amount of volume δV (tH0
) formed in the considered

present-day volume dV0 during the Hubble time tH0
. At each

time tp, a corresponding partial volume δVp = ε̇at R0 of tp ·dV0 ·δt
is caused, see section (19.2.5).

We substitute R = c · t:∫ ε̇at R0

0

dε̇ = 4π ·G ·
∫ tH0

0

ρvol,h.dt (19.15)

We evaluate the integrals. So, we derive the rate of formation
of volume that steadily arrives at R0 and originates from radii
R ≤ RH0

= c · tH0
:

ε̇at R0
(RH0

) = 4πG · tH0
· ρvol,h. (19.16)

19.2.5 LFV corresponding to a time

Question: Corresponding to a time tp ≤ tH0
(Fig. 19.3) and

during an increment of time δt, there forms the following incre-
ment of partial volume:

δVp(δt) = ε̇at R0 of tp · dV0 · δt (19.17)

This is a direct consequence of the definition of the rate ε̇ =
δV/δt
dV . What partial volume δVp(tH0

) forms during the time rang-
ing from t = 0 towards t = tH0

? How large is the rate ε̇at R0 of tp

corresponding to δVp(tp)?
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At the volume δVp(tp) and during the time ranging from t = 0
towards t = tp, there arrives the following accumulated rate, see
Eq. (19.16):

ε̇at R0 until tp = 4πG · tp · ρvol,h. (19.18)

Remind that the above rate is a result of the integration of
incremental rates from t = 0 towards t = tp, see Eq. (19.15).

During the remaining time ranging from tp towards t = tH0
, the

remaining rate arrives:

ε̇at R0 since tp = 4πG · (tH0
− tp) · ρvol,h. (19.19)

Remind that the above rate is a result of the integration of
incremental rates from t = tp towards t = tH0

, see Eq. (19.15).

Thus, the full rate arriving at R0 during the time ranging from
t = 0 towards t = tH0

is the rate obtained by the full integral
of incremental rates ranging from t = 0 towards t = tH0

, deter-
mined by Eq. (19.16). It is the sum of the rates in Eqs. (19.18,
19.19):

ε̇at R0 of tp = ε̇at R0 until tp + ε̇at R0 since tp (19.20)

ε̇at R0 of tp = ε̇at R0
(RH0

) = 4πG ·tH0
·ρvol,h. for each δVp (19.21)

Consequently, the following partial volume forms during the
time ranging from t = 0 towards t = tH0

δVp(δt = tH0
) = ε̇at R0

(RH0
) · dV0 · δt We summarize : (19.22)

Proposition 8 Accumulated rate

In a universe consisting of homogeneous volume, at an arbi-
trary location R0, there arrives an accumulated rate of volume
as follows:

(1) At R0, the rate per shell with thickness dR of the rates dε̇(R)
is a constant K0:

dε̇(dR, ρvol,h.)

dR
=

4πG · ρvol,h.
c

= K0(ρvol,h.) (19.23)



238 CHAPTER 19. DERIVATION OF DARK ENERGY

That rate is a function of the constant dynamic density ρvol,h.
of volume and of the universal constants G and c only.

(2) At R0, and at each partial volume δVp(tp) corresponding
to an arbitrary partial time tp ∈ [0, tH0

], there is the following
accumulated rate of formation of volume originating from radii
R ≤ RH0

= c · tH0
:

ε̇at R0
(RH0

) = 4πG · tH0
· ρvol,h. (19.24)

19.2.6 Rate of volume formed at dV0

In this section, we derive the rate of volume δV
δt that steadily

forms at the considered present-day volume dV0 at R0, see Figs.
(19.1, 19.2).

For it, we express the rate ε̇at R0
in Eq. (19.24) in terms of

its definition in terms of increments:

ε̇at R0
=

δV

δt · dV0
(19.25)

In order to derive the rate of volume δV
δt that forms in the con-

sidered present-day volume dV0 at R0, we multiply the above
Eq. (19.25) by that volume dV0:

ε̇at R0
· dV0 =

δV

δt
(19.26)

Result: The rate of volume δV
δt that forms in the considered

present-day volume dV0 at R0 is equal to the product of the
volume dV0 and the rate ε̇at R0

that describes the normalized

rate of formation of volume ε̇at R0
= δV/δt

dV . In the considered
universe consisting of volume only, that rate is a constant.

19.2.7 Volume formed at dV0

In this section, we derive the amount of volume δV (tH0
) that has

formed at the considered present-day volume dV0 at R0 during
the Hubble time tH0

, see Figs. (19.1, 19.2, 19.3).
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Derivation: For it, we multiply the constant rate of formation
of volume in dV0, see Eq. (19.26) and Fig. (19.3), by tH0

:

δV (tH0
) = ε̇at R0

· tH0
· dV0 (19.27)

Proposition 9 Volume formed by the accumulated rate

In a universe consisting of volume only, at an arbitrary location
R0, in a present-day probe volume dV0, during the Hubble time
tH0

, at the arriving accumulated rate of formation of volume
(PROP 8), the formed volume δV (tH0

) is equal to the probe
volume dV0:

δV (tH0
) = dV0 (19.28)

19.2.8 Derivation of the density of volume

In this section, we derive the density of volume. For it, we insert
the formed volume δV (tH0

) in Eq. (19.27) in the above equality
of volumes (Eq. 19.28):

ε̇at R0
· tH0
· dV0 = dV0 (19.29)

We insert the rate ε̇at R0
(Eq. 19.24), and we divide by dV0:

4π ·G · tH0
· ρvol,h. · tH0

= 1 (19.30)

We solve for ρvol,h., and we mark that theoretically derived den-
sity by ρvol,theo:

ρvol,h. =
1

4π ·G · t2H0

= ρvol,theo (19.31)

The corresponding energy density of volume is as follows:

uvol,h. = ρvol,h. · c2 =
c2

4π ·G · t2H0

= uvol,theo (19.32)

We summarize our findings:
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Proposition 10 Rate arriving at a probe volume

If a rate ε̇at R0
of LFV arrives at an arbitrary probe volume dV0

at an arbitrary location R0, then the following holds:

(1) During the Hubble time tH0
and at dV0, the rate forms the

volume dV0:

ε̇at R0
· tH0
· dV0 = dV0 (19.33)

(2) If the rate is caused by a density ρvol,h., then the rate fulfills
the following relation (Eq. 19.24 applies here, as the corre-
sponding summation and integration can be used here.):

ε̇at R0
= 4πG · tH0

· ρvol,h. (19.34)

19.2.9 Comparison with observed density ρvol,obs

In this section, we compare the theoretical value ρvol,theo of the
density of volume with an observed value ρvol,obs.

Hereby, each observation of ρvol,obs uses a physical object that
was emitted at some time tem. As a matter of fact, the obser-
vation depends slightly on that time tem, see e. g. Carmesin
(2018b), Carmesin (2021a), Carmesin (2021c). Accordingly, we
choose a time tem that represents a relatively homogeneous uni-
verse. Such a time corresponds to the early universe4.

Accordingly, we compare with an observation at high red-
shift z. Correspondingly, we compare with an observation based
on the CMB. In particular, the observations of the CMB by
the Planck satellite provide observations based on temperature
power spectra as follows, see Planck-Collaboration (2020):

H0,obs,CMB = 66.88 (±0.92)
km

s ·Mpc
(19.35)

ΩΛ,obs = 0.679± 0.013 (19.36)

4Note that a homogeneous density of radiation does hardly affect the observation, see
e. g. (Carmesin, 2021d, section 7.5), Carmesin (2021a), Carmesin (2021c)
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Hereby, the density parameter ΩΛ is defined as the ratio of
ρΛ and the critical density ρcr,t0. The critical density ρcr,t0 is
defined as the present-day density, at which the curvature pa-
rameter k in the FLE is zero, see e. g. Hobson et al. (2006)
or Carmesin (2019b). Hereby, k = 0 is the realistic value, see
Planck-Collaboration (2020), (Carmesin, 2021d, theorem 32(6))
and Eq. (5.10):

H2
0 =

8πG · ρcr,t0
3

− k · c
2

r2
with k = 0, so (19.37)

ρcr,t0 =
3H2

0

8πG
(19.38)

We derive the density parameter Ωvol,theo:

Ωvol,theo =
ρvol,theo
ρcr,t0

=
1

4π ·G · t2H0

· 8πG
3H2

0

=
2

3
(19.39)

Thus, the theoretical density parameter Ωvol,theo = 2
3 is in precise

accordance with the observed value ΩΛ,obs = 0.679± 0.013.

Theorem 36 Formation of volume by volume

In a universe consisting of volume only, the following holds:

(1) The density parameter of volume is equal to 2/3:

Ωvol,theo =
2

3
(19.40)

That result is in precise accordance with observation of early
dark energy with help of the CMB:

ΩΛ,obs = 0.679± 0.013 (19.41)

(2) The dynamic density of volume is as follows:

ρvol,h. =
1

4π ·G · t2H0

= ρvol,theo (19.42)
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Thereby, the rate arriving at R0 and caused by volume is equal
to the inverse Hubble time:

ε̇at R0
=

1

tH0

(19.43)

Accordingly, the dynamic density of volume is as follows, see
PROP (10):

ε̇2
at R0

4π ·G
= ρvol,theo =

ε̇at R0

4π ·G · tH0

(19.44)

c

4π ·G
·K0(ρvol,h.) = ρvol,theo (19.45)

(3) There is a constant and homogeneous density ρvol,h., see Eq.
(19.45).

(4) At a present-day probe volume dV0 at an arbitrary location
~R0, there occurs the accumulated rate of formation of volume:

ε̇at R0
= 4πG · tH0

· ρvol,h. (19.46)

At that rate, the present-day probe volume dV0 forms during the
Hubble time tH0

.

19.3 uvol at another time

Question: What is the value of the energy density uvol of vol-
ume at another value tH1

of the Hubble time?

For it, we use the accumulated rate of formation of volume
originating from radii R ≤ RH0

= c · tH0
, see PROP (8):

ε̇at R0
(RH0

) = 4πG · tH0
· ρvol,h. (19.47)

In the case of another value tH1
of the Hubble time, the accu-

mulated rate originates from radii R ≤ RH1
= tH1

:

ε̇at R0
(RH1

) = 4πG · tH1
· ρvol,h. (19.48)
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Figure 19.4: In order to measure the density as a function of
location, space is partitioned into boxes. A box has a location
~r, and the density ρm(t, ~r) is measured for each box.

This relation holds for the following reason: In the derivation of
PROP (8), we did not use the particular value tH0

of the Hubble
constant. Consequently, PROP (8) holds for each value tH1

of
the Hubble constant. Thus, PROP (8) provides the above Eq.

We emphasize that the homogeneous density ρvol,h. is the
same in both rates in Eqs. (19.47, 19.48). As these terms
result from the integration with respect to R or t with the same
homogeneous integrand ρvol,h., see Eq. (19.15). The ratio of
these Eqs. (19.47, 19.48) provides the relation of rates and
times as follows:

ε̇at R0
(RH1

)

ε̇at R0
(RH0

)
=
tH1

tH0

or
ε̇at R0

(RH1
)

tH1

=
ε̇at R0

(RH0
)

tH0

(19.49)

We analyze the possibility of a density ρvol,h.(tH1
) at the time

tH1
. An observer at tH1

could determine ρvol,h.(tH1
) with the rate

in Eq. (19.48):

ε̇at R0
(RH1

) = 4πG · tH1
· ρvol,h.(tH1

) (19.50)

In order to determine ρvol,h.(tH1
), the observer could solve the

above Eq. for ρvol,h.(tH1
):

ρvol,h.(tH1
) =

ε̇at R0
(RH1

)

tH1

1

4πG
(19.51)
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In order to compare the analyzed density ρvol,h.(tH1
) with

the homogeneous density ρvol,h. in Eq. (19.47), we apply the
relation of rates in Eq. (19.49):

ρvol,h.(tH1
) =

ε̇at R0
(RH0

)

tH0

1

4πG
(19.52)

Using the rate in Eq. (19.47), we identify the right hand side
in the above Eq. with the homogeneous density in Eq. (19.47):

ρvol,h.(tH1
) = ρvol,h., so we get : (19.53)

Theorem 37 Homogeneity implies constant ρvol,h.

In a universe consisting of homogeneous volume only, the fol-
lowing holds:

(1) The energy density uvol of volume that forms at the present-
day Hubble time tH0

is equal to the energy density that forms at
an arbitrary value tH1

of the Hubble time:

ρvol,h.(tH1
) = ρvol,h. = ρvol,theo =

1

4πG · t2H0

and (19.54)

uvol,h.(tH1
) = uvol,h. = ρvol,theo · c2 =

c2

4πG · t2H0

(19.55)

(2) The rate of LFV at the present-day Hubble time tH0
and the

rate of LFV at another value tH1
of the Hubble time are related

as follows:

ε̇at R0
(RH1

)

ε̇at R0
(RH0

)
=
tH1

tH0

or
ε̇at R0

(RH1
)

tH1

=
ε̇at R0

(RH0
)

tH0

(19.56)

(3) Thus, the density of volume is transformed as follows: As
a consequence of the relation of rates in Eq. (19.56), the den-
sity ρvol,h.(tH1

) cannot be determined by replacing the value of
the Hubble time only in equation ρvol,theo = 1

4πG·t2H0

. Instead,

the value of the Hubble time AND the value of the rate are
transformed. This implies the constant energy density in Eq.
(19.54).



Chapter 20

Dark Energy in a
Homogeneous Universe

Question: If a homogeneous density ρhom is added to the uni-
verse consisting of volume only (section 19.2), then there occurs
a homogeneous universe, and then there are additional masses
or dynamic masses mi. Do these mi cause an extra rate ε̇at R0

at
the present-day probe volume dV0? As the essential example,
we analyze the density of matter ρm.

20.1 Spatial averages in cosmology

Idea: In order to measure a homogeneous density ρhom, it is
necessary to execute an average in a volume L3

box. In this sec-
tion, we summarize methods of such averaging in cosmology, see
Fig. (19.4) and see e. g. Peebles (1973), Kravtsov and Borgani
(2012), Carmesin (2021d), Haude et al. (2022).

Boxes: As a convention, the spatial average is performed within
a cubic volume Vwin = L3

box, related to 8 Mpc as follows, see e.
g. Kravtsov and Borgani (2012), Carmesin (2021d)1:

1Note that this scaling of the size Lbox is a convention. In general, the scaling of Lbox
is not identical to the scale factor describing the expansion of space since the Big Bang.
Sometimes, averages are performed in spheres, White et al. (1993).

245
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Lbox = 8h−1 Mpc with h = H0 ·
1

100

km

s ·Mpc
(20.1)

Local density: A box has a location ~r. A local density at a time
t is measured for each box:

local density ρm(t, ~r) (20.2)

Global density: The globally averaged density is introduced:

global density ρm,hom(t) (20.3)

Overdensity: The overdensity is introduced as follows:

overdensity δ(t, ~r) =
ρm(t, ~r)− ρm,hom(t)

ρm,hom(t)
(20.4)

The density ρm,het(t, ~r) of the heterogeneity is the product of
ρm,hom(t) and the overdensity:

ρm,het(t, ~r) = ρm,hom(t) · δ(t, ~r) (20.5)

We summarize the densities in the surroundings of the volume:

ρ = ρm,hom(t) + ρm,het(t, ~r) + ρr + ρΛ (20.6)

20.1.1 Averages of fluctuations

In this section, we summarize spatial averaging of fluctuations
in cosmology, see for instance Peebles (1973), Kravtsov and
Borgani (2012), Carmesin (2021d).

A spatial average of a function f(~r) is applied within a volume
Vwindow or Vwin of a considered region (window) of averaging:

〈f(~r)〉Vwin =

∫
Vwin

f(~r) dr3∫
Vwin

1 dr3
(20.7)
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Fluctuations of a function f(~r) are usually described by the
standard deviation σVwin:

σ2
Vwin

= 〈[f(~r)− 〈f(~r)〉Vwin]2〉Vwin = 〈f 2(~r)〉Vwin − 〈f(~r)〉2Vwin
(20.8)

As a convention, the spatial average is performed within a cubic
volume Vwin = L3

box, related to 8 Mpc as follows, see Eq. (20.1)
or e. g. Kravtsov and Borgani (2012), Carmesin (2021d)2. In
that case, the standard deviation is named σ8(t) or δ(t):

σ8(t) = δ(t) = σδ,Vwin(t) with σ8,0 = σ8(t0) (20.9)

20.2 Formation and propagation of volume

Idea: The dynamics of additional volume and of volume in gen-
eral is described by the formation and propagation of volume
(chapter 11). After averaging, a homogeneous density ρm,hom(t)
does not cause an extra rate ε̇at R0

at the present-day probe vol-
ume dV0. The formation of volume in dV0 is based on a solution
of the nonhomogeneous DEQ, so it could be caused by a local
heterogeneity ρm,het(t, ~r) only. In contrast, the propagation of
volume is described by a solution of the homogeneous DEQ.
Here, we elaborate local and averaged results.

Theorem 38 Formation & propagation at homogeneity

(1) In a universe with a homogeneous density ρm,hom, the fol-
lowing holds:

(1a) Each mass or dynamic mass mi causes unidirectional for-
mation of volume ε̇L in its near vicinity. It is described by
a nonhomogenous solution of the DEQ (11.7). Each such
solution is characterized by a nonzero gravitational field ~G∗i .

(1b) At a larger vicinity, heterogeneity cancels out, so that
the density is homogeneous. Correspondingly, the fields ~G∗i of

2Note that this scaling of the size Lbox is a convention. In general, the scaling of Lbox
is not identical to the scale factor describing the expansion of space since the Big Bang.
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different masses mi compensate each other, so that the field ~G∗

is zero. As a consequence, the homogeneous solution of the
DEQ describes the dynamics. Consequently, the density ρm, hom

does not cause any extra rate ε̇at R0
at the present-day probe

volume dV0.

(1c) The homogeneous density, ρm, hom causes the squared nor-

malized rate of globally formed volume
(
V̇
V

)2

= 24πGρm, hom. If

such GFV arrives at the present-day probe volume dV0, it passes
dV0 without forming volume at dV0, as it propagates according
to the homogeneous solution.

(2) A possible homogeneous density ρr, hom of radiation exhibits
the same properties with respect to dV0, see part (1).

(3) For each averaged density ρ1, the LFV or GFV exhibit a
solution of the DEQ (11.7). That solution includes a solution
of the corresponding homogeneous DEQ. Accordingly, that solu-
tion also describes a squared normalized rate of globally formed

volume
(
V̇
V

)2

= 24πGρ1.

(4) In the universe consisting of volume only, the density pa-
rameter of volume is equal to two thirds, Ωvol = 2

3.

(5) In the homogeneous universe, the density parameter of vol-
ume is equal to two thirds, Ωvol = 2

3. A homogeneous density
ρm, hom causes GFV, but ρm, hom does not cause a change of the
density of volume ρvol.

(6) In a universe with heterogeneous matter with a correspond-
ing density ρm,hom + ρm,het, the following holds:

(6a) Each local heterogeneity ρm,het(~r) causes unidirectional for-
mation of volume ε̇L. It is described by a nonhomogenous solu-
tion of the DEQ (11.7). Each such solution is characterized by
a nonzero gravitational field ~G∗i .

(6b) Consequently, a local heterogeneity ρm,het(~r) causes an ex-
tra rate ε̇at R0

at the present-day probe volume dV0.



Chapter 21

Dark Energy by Heterogeneity

Essential question: The formation of LFV according to uni-
directional formation of volume (THM 15) at a homogeneous
density ρm,hom provides a value uvol,theo,hom of the energy den-
sity of volume (THM 36, 37, 38). For comparison, the value
uΛ,obs,CMB of the energy density of Λ has been observed with
help of the cosmic microwave background, CMB. That value is
in precise accordance with our derived value uvol,theo,hom (C. 19).
However, Riess et al. (2022) discovered a highly significant dis-
crepancy among different observations of the Hubble constant
H0. What is the physical reason of that difference?

21.1 Physics of the observed discrepancy

Idea: In usual cosmological models, a homogeneous universe is
used, Friedmann (1922), Lemaitre (1927), Hobson et al. (2006).
With it, the rate of expansion is described by the Hubble pa-
rameter, Eq. (5.27):

H(z) = H0

√
ΩΛ + Ωm,0(1 + z)3 + Ωr,0(1 + z)4 (21.1)

Thereby, the redshift z describes a calendar date, we apply
Ωk,0 = 0, and the Hubble constant H0 is a constant. In our
heterogeneous universe, the factor H0 in Eq. (21.1) might be a
function of z. We provide a first test of that possibility:

249
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21.1.1 Observed discrepancy

Based on the CMB, emitted at zem = 1090.3, the observed value
of H0 is as follows, Planck-Collaboration (2020):

H0,obs,CMB = 66.88(±0.92)
km

s ·Mpc
(21.2)

Riess et al. (2022) used radiation emitted from supernovae of
type Ia in near galaxies and obtained the following H0-value:

H0,obs,near,Ia = 73.04(±1.01)
km

s ·Mpc
(21.3)

Thereby, the averaged redshift is 〈z〉 = 0.055, see (Riess et al.,
2022, sections 5.1 and 5.2). So, observers discovered an inter-
esting discrepancy at the five σ confidence level, and it might
be related to the redshift zem.

21.1.2 How are different values of H0 observed?

Idea: The values of the Hubble parameter H(z) and the root
in Eq. (21.1) can be observed. That Eq. can be solved for H0:

H0 =
H(z)√

ΩΛ + Ωm,0(1 + z)3 + Ωr,0(1 + z)4
(21.4)

If an observer uses radiation emitted at a redshift zem, then the
state and the value of H0 at z = zem are observed:

H0(zem) =
H(zem)√

ΩΛ + Ωm,0(1 + zem)3 + Ωr,0(1 + zem)4
(21.5)

21.1.3 Plan and results

In the following, we will explain the discrepancy in section
(21.1.1) by fundamental physics: Firstly, we show how H0 be-
comes a function of time or of z = zem (section 21.2). Secondly,
we will derive a reference value of H0, corresponding to the ho-
mogeneous universe (section 21.3). Thirdly, we will derive the
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observed discrepancy. Fourthly, we will precisely predict possi-
ble future observations of such discrepancies (section 21.4).

21.2 Time dependence of H0

Fact of time dependence: Of course, the usual or ideal value
H0,ideal of the Hubble constant does not depend on time, see e.
g. Hobson et al. (2006); Planck-Collaboration (2020); Workman
et al. (2022). However, each observation of the Hubble constant
uses a probe, the CMB or light emitted by near galaxies, for
instance. As a matter of fact, each probe has been emitted at
a time tem of emission. Thus, each observed value H0,obs of the
Hubble constant is a function of the time of emission:

H0,obs = H0,obs(tem) (21.6)

In principle, H0,obs could depend on even more peculiar details
of observation. However, we will show that the largest part of
the observed variation of H0,obs can be explained by the time
evolution of the universe1.

21.3 Derivation of the ideal value of H0

Idea: We introduce an ideal reference value H0,hom correspond-
ing to the homogeneous universe. For it, we derive H0,hom from
our theoretical value of the energy density in the homogeneous
universe (THMs 36 and 38):

ρvol,theo(tem = thom) =
1

4πG · t2H0,hom

(21.7)

Remind that a homogeneous density of matter causes more vol-
ume, but no increased density of volume. This reference value
is an ideal value for the following reasons:

1See e. g. Carmesin (2018c), Carmesin (2018b), Carmesin (2019b), Carmesin (2021d),
Carmesin (2021a), Carmesin (2021b), Carmesin (2021c).
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(1) The homogeneous case is ideal, as the corresponding den-
sity ρvol,theo(tem = thom) is equal to the density of the universe
consisting of volume only:

ρvol,theo(tem = thom) = ρvol,c.h. (21.8)

(2) Only this homogeneous case is ideal, as heterogeneity is
peculiar. Hereby, thom describes the time at which the universe
was homogeneous. Accordingly, tH0,hom

= 1/H0,hom describes
the time corresponding to the ideal Hubble constant H0,hom.
(3) As the universe was most homogeneous in the early universe,
a probe emitted at thom can sample a very huge volume. Thus,
possible peculiar local deviations can be averaged out.
Methods: We derive the ideal value H0,hom by several methods,
in order to show the robustness of the concept:

21.3.1 First derivation of H0,hom

The ideal value H0,hom corresponds to the time thom at which
the universe was homogeneous. Correspondingly, H0,hom is the
value of H0,obs at thom:

H0,hom = H0,obs(tem = thom) (21.9)

Estimation of H0,hom: As the universe has been nearly homoge-
neous at the emission of the CMB, the ideal value is that of the
CMB, in a good approximation:

H0,hom ≈ H0(tem = tCMB) = 66.88 (±0.92)
km

s ·Mpc
(21.10)

As that value essentially represents the present-day age of the
universe, tH0

= 1/H0, it cannot be derived, it is measured.

21.3.2 Second derivation of H0,hom

Idea: We derive H0,hom on the basis of the local dynamics of
LFV. For it, we use the density ρvol,theo(tem = thom) in Eq.
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(21.7), that we derived on the basis of that local dynamics,
C. (19).

Firstly, we apply tH0,hom
= 1/H0,hom to the density in Eq.

(21.7), and we solve for H2
0,hom:

H2
0,hom = ρvol,theo(tem = thom) · 4πG (21.11)

Hereby, the density is the product of the density parameter and
the critical density,

ρvol,theo(tem = thom) = Ωvol,0(tem = thom) · ρcr,0(tem = thom)
(21.12)

or ρvol,theo(tem = thom) =
2

3
ρcr,0(tem = thom) (21.13)

and the critical density is as follows (Eq. 19.38):

ρcr,0(tem = thom) =
3H2

0(tem = thom)

8πG
(21.14)

Secondly, we insert the above relations of densities in Eqs.
(21.12, 21.13) into the term of H2

0,hom in Eq. (21.11):

H2
0,hom =

2

3

3H2
0(tem = thom)

8πG
· 4πG = H2

0(tem = thom) (21.15)

Thus, the ideal value of H0 is the value of the Hubble constant
at the time when the universe was homogeneous:

H0,hom = H0(tem = thom) (21.16)

This result is in accordance with Eqs. (21.9, 21.10).

21.4 Parameter measured with a probe

Idea: If the value of H0 is measured, then a probe is used that
has been emitted at a time tem (Fig. 21.1). In that probe,
heterogeneity that formed at times tform before tem is included.
In this section, we derive rates of LFV caused by heterogeneity
at such times tform, see Eq. (21.2).
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zzem0

0t0 tem

photo
taken

evaluation

radiation
propagates structure formation

tform - integration
t

present-day

Figure 21.1: Measurement of a cosmological parameter: The
structure formed during the time between t = 0 and tem
(dashed). The structure, e. g. the above two stars, emits radi-
ation at a time tem. That radiation propagates to the observer
during the time between tem and t0 (dotted).

21.4.1 Field caused at a time tform

At a time tform, a mass dMj,het(tform) causes the field at R:

|d~G∗j |(R) =
G · dMj,het(tform)

R2
(21.17)

If the mass is at a location ~r, then the mass is expressed by
the density and overdensity, see Eq. (20.5):

dMj,het(tform) = ρm,hom(tform) · δ(tform, ~r) · dVj(tform) (21.18)

In the expanding universe, the scale radius can change from a
value a(tform) to a value a(t0). Thereby, the volume dVj changes
as follows:

dVj(t0) = dVj(tform)

(
a(t0)

a(tform)

)3

(21.19)

Consequently, the density changes as follows:

ρm(t0) = ρm(tform)

(
a(tform)

a(t0)

)3

(21.20)
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dR

R dMj
dVj

R0
dV0

dε̇L
RGW

dε̇L
RGW

dε̇L
RGW

ρm,het

Figure 21.2: The density ρm,het in an area at a distance R from
R0 has a j − th mass dMj. It generates rates dε̇L propagating
towards all directions in the same manner.

The mass in Eq. (21.18) is transformed to the mass term in Eq.
(21.21) by inserting the changes in Eqs: (21.19, 21.20):

dMj,het(tform) = ρm,hom(t0) · δ(tform, ~r) · dVj(t0) (21.21)

21.4.2 Fluctuations caused at a time tform

Idea: In order to analyze fluctuations of fields, we investigate
squares and their averages.

At a time tform, masses dMj,het(tform) cause the field in Eq.
(21.17) and its square at R. Hereby, we express the mass in
terms of the density in Eq. (21.21):

〈d~G∗2~r, from tform
(t0, R)〉 =

G2 · ρ2
m,hom(t0) · 〈δ2(tform, ~r)〉 · dV 2

L

R4

(21.22)
Thereby, we replace the subscript j of a mass by the subscript
~r of the location, and we use the volume of the shell dVL =
4πR2dL. In the present global analysis, we can replace dL by
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dR is a very good approximation. Additionally, we apply the
average with respect to the fluctuations of heterogeneity.

Next, we use the law of unidirectional formation of volume
(THM 15), and we apply the standard deviation 〈δ2〉 = σ2:

〈dε̇2
het(t0, tform, R)〉 =

G2 · ρ2
m,hom(t0) · σ2(tform) · 16π2dR2

c2

(21.23)

21.4.3 Linear growth theory

Idea: The time evolution of the heterogeneity is described by
the time evolution of the standard deviation σ2(tform) in Eq.
(21.23). For it, we apply the linear growth theory.

Based on the FLE, the linear growth theory describes the time
evolution of density fluctuations. As a result, the standard de-
viation is a linear function of time as follows2:

σ(t) = σ8,0 ·
t

tH0

(21.24)

21.4.4 Integration and equivalent rate

Ideas: Firstly, for each time of emission tem, we integrate the
fluctuations that formed in the universe since the Big Bang at
tform = 0 until tem.

Secondly, the squared rates 〈dε̇2
het(t0, tform, R)〉 in Eq. (21.23)

correspond to RGWs with a kinetic energy (THM 19). The
presence of that nonzero kinetic energy shows that there are
nonzero RGWs with a corresponding equivalent rate dε̇het,equi.

Accordingly, we express 〈dε̇2
het(t0, tform, R)〉 by the kinetic energy

of corresponding RGWs, see THM (19):

〈dε̇2
het(t0, tform, R)〉 = 〈dukin〉 ·

8πG

c2
(21.25)

2Kravtsov and Borgani (2012), (Carmesin, 2021d, Eq. (7.123)), with normalization to
σ(tH0

) = σ8,0. Eq. (21.24) is a good approximation, Mandal and Nadkarni-Ghosh (2020).
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According to THM (19), the kinetic energy corresponds to a
square of equivalent rates:

〈dukin〉 =
c2

8πG
· dε̇2

equi,het, consequently, (21.26)

dε̇het,equi =
√
〈dε̇2

het(t0, tform, R)〉, (21.27)

We identify the increment dR with the time of formation mul-
tiplied by c or |dR| = c · |dtform|. So the rate is transformed to
the following term, see Eq. (21.23):

dε̇het,equi =
G · ρm,hom(t0) · σ8,0 · tform · 4π · dtform

tH0

(21.28)

The ratios of densities and density parameters are equal:

ρm,hom(t0)

Ωm,0
=
ρΛ,hom(t0)

ΩΛ,0
or (21.29)

ρm,hom(t0) = ρΛ,hom(t0) ·
Ωm,0

ΩΛ,0
(21.30)

We apply Eq. (21.30) to the rate in Eq. (21.28):

dε̇het,equi =
tform

tH0

dtform

tH0

[4πGρΛ,hom(t0)tH0
]
σ8,0 · Ωm,0

ΩΛ,0
(21.31)

We use scaled time : t̃ :=
tform

tH0

, with it, (21.32)

dε̇het,equi = t̃dt̃ · [4πG · ρΛ,hom(t0) · tH0
] · σ8,0 · Ωm,0

ΩΛ,0
(21.33)

We apply the integral. Moreover, we identify the rectangular
bracket with the rate in the homogeneous universe (part (4) in
THM 36):

ε̇hom = 4πG · ρΛ,hom(t0) · tH0
and (21.34)∫ ε̇het,equi,0

0

dε̇het,equi =

∫ t̃em

0

t̃dt̃ · ε̇hom ·
σ8,0 · Ωm,0

ΩΛ,0
or (21.35)
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ε̇het,equi,0(t̃em) = ε̇hom ·
t̃2emσ8,0 · Ωm,0

2ΩΛ,0
(21.36)

We abbreviate the ratios of the rate ε̇het,equi,0 caused by hetero-
geneity and the rate ε̇hom of the homogeneous universe:

κ(t̃em) =
ε̇het,equi,0(t̃em)

ε̇hom

=
t̃2emσ8,0 · Ωm,0

2ΩΛ,0
or (21.37)

κ(zem) =
σ8,0 · Ωm,0

2ΩΛ,0 · (1 + zem)2
or (21.38)

ε̇het,equi,0(t̃em) = κ(t̃em) · ε̇hom or (21.39)

ε̇het,equi,0(t̃em) = κ(zem) · ε̇hom (21.40)

21.4.5 Equivalent density

Idea: The density of heterogeneity is zero. However, the het-
erogeneity causes an additional rate. This can be represented
by an equivalent density ρhet,equi

In order to derive the equivalent density, we apply the ab-
breviation in Eq. (21.37) and the rate ε̇hom in Eq. (21.34) to
the rate ε̇het,equi,0 in Eq. (21.36):

ε̇het,equi,0(t̃em) = 4πG · ρΛ,hom(t0) · tH0
· κ(t̃em) (21.41)

The product ρΛ,hom(t0) · κ(t̃em) in the above Eq. is caused by
heterogeneity. Accordingly, we call the product equivalent
density of heterogeneity:

ρhet,equi = ρΛ,hom(t0) · κ(t̃em) (21.42)

With it, the rate ε̇het,equi,0 in Eq. (21.41) is as follows:

ε̇het,equi,0(t̃em) = 4πG · ρhet,equi · tH0
(21.43)

In order to obtain the complete rate ε̇sum, we add the two rates
in Eqs. (21.41) and (21.34):

ε̇sum(t̃em) = ε̇hom + ε̇het,equi,0(t̃em) = 4πG[ρΛ,hom(t0) + ρhet,equi]tH0

(21.44)
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We apply the abbreviation in Eq. (21.39) to the above rate:

ε̇sum(t̃em) = ε̇hom · [1 + κ(t̃em)] (21.45)

We abbreviate the sum of densities in Eq. (21.44), and we use
ρΛ,hom(t0) = ρvol, C. (20):

ρΛ,hom(t0) + ρhet,equi = ρvol+equi = ρvol + ρhet,equi (21.46)

We insert the density and the rate in Eqs. (21.45, 21.46) into
the rate in Eq. (21.44). Additionally, we divide by 4πG · tH0

:

ε̇hom · [1 + κ(t̃em)] · 1

4πG · tH0

= ρvol+equi (21.47)

We describe the ratio of the densities ρvol+equi and ρΛ,hom(t0)
with help of an exponent ξ that we derive in the following:

ρvol+equi = ρΛ,hom(t0)[1+κ(t̃em)]ξ = ρvol,theo[1+κ(t̃em)]ξ (21.48)

Hereby, we use the equality of ρΛ,hom(t0) and ρvol,theo. With it,
the density in Eq. (21.47) is as follows:

ε̇hom·[1+κ(t̃em)]· 1

4πG
· 1

tH0

= ρΛ,hom(t0)·[1+κ(t̃em)]ξ or (21.49)

ε̇hom · [1 +κ(zem)] · 1

4πG
· 1

tH0

= ρΛ,hom(t0) · [1 +κ(zem)]ξ (21.50)

21.4.6 Hubble constant measured with a probe

Idea: If the Hubble constant H0,obs is measured with a probe
emitted at a time tem, then the rate ε̇sum(t̃em) in Eq. (21.44) ar-
rives at the probe volume dV0. Accordingly, the observed Hub-
ble constant H0,obs includes the sum of densities ρvol+equi. The
resulting Hubble constant H0,obs is elaborated in this section.

For it, we use the fact that the Hubble constant is a function
of the density. The radiation era is characterized by redshifts
above zeq = 3411 ± 48, (Planck-Collaboration, 2020, table 2).
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Heterogeneity was still very small at the redshift zCMB = 1090
of the emission of the CMB, Smoot et al. (1992) or (Carmesin,
2021d, Eq. 7.104):

σ8(zCMB = 1090) = 44 · 10−6 (21.51)

Accordingly, in our present analysis of heterogeneity, we can
neglect the density of radiation in a good approximation. Thus,
H0 is as follows:

H2
0 =

8πG

3
· (ρm,hom + ρΛ) (21.52)

In the observed Hubble constant H0,obs, the rate caused by
heterogeneity is included. This rate corresponds to the density
ρhet,equi. Thus, this rate can be included in the Hubble constant
in Eq. (21.52) by using the sum of the densities ρvol+equi instead
of the density of volume ρΛ. So we derive the squared observed
Hubble constant:

H2
0,obs(zem) =

8πG

3
· (ρm,hom + ρvol+equi) (21.53)

In the above Eq., we insert ρvol+equi in Eq. (21.48):

H2
0,obs =

8πG

3
· (ρm,hom + ρvol,theo · [1 + κ(zem)]ξ) (21.54)

In the above Hubble constant Eq. (21.54), we apply the
density parameters. As H0,obs describes the present-day rate of
expansion of the universe, the present-day density parameter of
matter is used:

Ωm,0 =
ρm,hom

ρcr.,0
andΩvol,0,theo =

ρvol,theo
ρcr.,0

=
2

3
(21.55)

So we derive:

H2
0,obs =

8πG · ρcr.,0
3

· (Ωm,0 + Ωvol,0,theo · [1 + κ(zem)]ξ) (21.56)
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We identify the fraction in the above Eq. with the squared
Hubble constant H2

0,without het without heterogeneity:

H2
0,obs(zem) = H2

0,without het · (Ωm,0 + Ωvol,0,theo · [1 + κ(zem)]ξ)

(21.57)

We apply the root.

H0,obs(zem) = H0,without het ·
√

Ωm,0 + Ωvol,0,theo · [1 + κ(zem)]ξ

(21.58)

We apply the Hubble times tH0,obs = 1/H0,obs(zem) and tH0,hom =
1/H0,without het to the above equation:

1/tH0,obs = 1/tH0,hom ·
√

Ωm,0 + Ωvol,0,theo · [1 + κ(zem)]ξ

(21.59)

We apply the inverse Hubble time 1/tH0,obs to the density in
Eq. (21.50). As the heterogeneity is included in Eq. (21.50),
the observed Hubble time is used:

ε̇hom · [1 + κ(zem)] · 1

4πG
· 1

tH0,obs
= ρΛ,hom(t0) · [1 + κ(zem)]ξ or

ε̇hom[1 + κ(zem)]
√

Ωm,0 + Ωvol,0,theo · [1 + κ(zem)]ξ · 1

4πG

1

tH0,hom

= ρΛ,hom(t0) · [1 + κ(zem)]ξ

(21.60)

We apply ε̇hom = 1
tH0,hom

(Eq. 19.29) to the above Eq.:

[1 + κ(zem)] ·
√

Ωm,0 + Ωvol,0,theo · [1 + κ(zem)]ξ

· 1

4πG · t2H0,hom

= ρΛ,hom(t0) · [1 + κ(zem)]ξ (21.61)

We apply 1
4πG·t2H0,hom

= ρΛ,hom(t0) (Eq. 19.31) to the above Eq..

Additionally, we divide the Eq. by ρΛ,hom(t0):
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[1 + κ(zem)]
√

Ωm,0 + Ωvol,0,theo · [1 + κ(zem)]ξ = [1 + κ(zem)]ξ

(21.62)

The exponent ξ is determined by this equation.

21.4.7 Derivation of the exponent ξ

In order to solve Eq. (21.62), we apply the square. Additionally,
we abbreviate 1 + κ(zem) by y, and we abbreviate yξ by w:

y2(Ωm,0 + Ωvol,0,theo · w) = w2 or (21.63)

0 = w2 − w · Ωvol,0,theo · y2 − Ωm,0 · y2 with (21.64)

y = 1 + κ(zem) and w = yξ (21.65)

The above quadratic equation has the following two solutions:

w± =
Ωvol,0,theo · y2

2
·

(
1±

√
1 +

4Ωm,0

Ω2
vol,0,theo · y2

)
(21.66)

The solution w− is negative. Thus, it does not provide a real
exponent, see Eq. (21.65). Accordingly, we solve the above
equation for the exponent ξ by using the solution w+ (see Eq.
21.65):

ξ =
ln(w+)

ln(y)
and y = 1 + κ(zem) with (21.67)

w+ =
Ωvol,0,theo · y2

2
·

(
1 +

√
1 +

4Ωm,0

Ω2
vol,0,theo · y2

)
(21.68)
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21.4.8 H0 measured with the CMB

Idea: If the Hubble constant H0,obs is measured with a probe
emitted at a time tem, then it is described by the term in Eq.
(21.57). With it, we derive the theoretical value of the observed
Hubble constant for the case of observation based on the CMB,
H0,obs(zem) with zem = zCMB.

In the above Eq., we insert the following values:
Ωvol,0,theo = 2

3 , Ωm,0 = 1− Ωvol,0,theo = 1
3 ,

σ8,0 = 0.8118± 0.0089, (Planck-Collaboration, 2020, table 2),
zCMB = 1090.3± 0.41, (Planck-Collaboration, 2020, table 2),
H0,obs,CMB = 66.88 (±0.92) km

s·Mpc , (Planck-Collaboration, 2020,
table 2).

Thus, the ratio of rates κ(zem) in Eqs. (21.39, 21.40) has the
following value:

κ(zCMB) =
0.8118 · 1/3

2 · 2/3 · (1 + 1090.3)2
= 1.7 · 10−7 (21.69)

With it, we solve Eq. (21.62), see section (21.4.7):

ξCMB = 1.5 (21.70)

Consequently, the observable Hubble constant without hetero-
geneity has the same value as plus a relative correction of the
order of κ(zCMB) ≈ 10−7, see Eq. (21.57):

H0,without het = H0,obs,CMB · (1 +O(10−7)) (21.71)

21.4.9 H0 measured with near galaxies

Idea: If the Hubble constant H0,obs is measured with a probe
emitted at a time tem, then it is described by the term in Eq.
(21.57). With it, we derive the theoretical value of the observed
Hubble constant for the case of observation based on the emitted
radiation of near galaxies at zem = znear = 0.055, see (Riess
et al., 2022, sections 5.1 and 5.2).
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In Eq. (21.57), we insert the following values:
Ωvol,0,theo = 2

3 , Ωm,0 = 1− Ωvol,0,theo = 1
3 ,

σ8,0 = 0.8118± 0.0089, (Planck-Collaboration, 2020, table 2),
znear = 0.055, (Riess et al., 2022, sections 5.1 and 5.2),
H0,without het = 66.88 (±0.92) km

s·Mpc , Eq. (21.71).

Thus, the ratio of rates κ(znear) in Eqs. (21.39, 21.40) has the
following value:

κ(znear) =
0.8118 · 1/3

2 · 2/3 · (1 + 0.055)2
= 0.182± 0.002 (21.72)

With it, we solve Eq. (21.62), see section (21.4.7):

ξnear = 1.5317 (21.73)

Consequently, the theoretical value of the observable Hubble
constant is as follows:

H0,theo(znear) = H0,without het

√
1

3
+

2

3
· 1.1821.5317 (21.74)

= 73.11± 1.08
km

s ·Mpc
(21.75)

Thus, our theoretical result is in precise accordance (within
errors of measurement) with the currently most precise obser-
vation in Eq. (21.3):

H0,obs,near = 73.04 (±1.01)
km

s ·Mpc
at 〈z〉 = 0.055 (21.76)

This is the baseline result in (Riess et al., 2022, sections 5.1 and
5.2), obtained at the ”near field” or ’low redshift’ 〈z〉 = 0.055.

The relative difference between theory and measurement is
very low at 0.096 %:

∆obs,theo =
H0,obs,near −H0,theo(znear)

H0,obs,near
=

73.11− 73.04

73.04
= 0.096%

(21.77)
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Figure 21.3: Observed values of Hubble constant H0,obs as a func-
tion of the redshift zem of the emission of the respective probe.
Probes: ×, megamaser, Pesce et al. (2020). ?, distance ladder
with SN type I, Riess et al. (2022). full full �, starburst galax-
ies, Cao et al. (2021). o, baryonic acoustic oscillations, BAO,
Philcox et al. (2020), Addison et al. (2018)). •, weak gravi-
tational lensing and galaxy clustering, Abbott et al. (2020)).
∆, strong gravitational lensing, Birrer et al. (2020). �, gravita-
tional wave, Escamilla-Rivera and Najera (2022). ⊗, old galax-
ies or stars, Cimatti and Moresco (2023), (Tab. 1). Square,
surface brightness, Blakeslee et al. (2021). Pentagon, CMB,
Planck-Collaboration (2020).
Theory: densely dotted (loosely dotted: range of theoretical
values, resulting from error of measurement of the CMB value).
Comparison: Measured values and theoretical values are in
precise accordance within the errors of measurement.
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Theorem 39 Time evolution of the Hubble constant
(1) The Hubble constant H0 is an essential parameter of space-
time and of cosmology. However, observations show that H0 is
not constant Planck-Collaboration (2020); Riess et al. (2022).
Thus, the physical nature of that discrepancy is essential for the
foundations of physics.
(2) At a good approximation, Ωr,0 = 0, ΩK,0 = 0. With it, we
derived, explained and calculated the discrepancy as follows:
(2a) For the case of a homogeneous universe, corresponding to
the universe at the redshift z = 1090, we derived the dynamic
density of volume ρvol,theo and the Hubble constant, both in pre-
cise accordance with observation:

ρvol,theo =
1

4π ·G · t2H
and Ωvol,0,theo =

2

3
(21.78)

(2b) For the case of a heterogeneous universe, corresponding
to the present-day universe at the redshift z ≈ 0, we derived
the same dynamic density of volume ρvol,theo, but an increased
Hubble constant, both in precise accordance with observation.
(2c) The theoretical value H0,theo(zem) of the observable Hub-
ble constant is the following function of the redshift zem (of the
emission of the probe used in the observation):

H0,theo(zem) = H0,without het ·
√

Ωm,0 + Ωvol,0,theo · [1 + κ(zem)]ξ

(21.79)

with κ(zem) =
σ8,0 · Ωm,0

2ΩΛ,0 · (1 + zem)2
=
ε̇het,0(t̃em)

ε̇hom

and (21.80)

H2
0,without het =

8πG

3
· ρcr.,0 (21.81)

Hereby, the exponent ξ is the solution of the following equation:

[1 + κ(zem)]
√

Ωm,0 + Ωvol,0,theo · [1 + κ(zem)]ξ = [1 + κ(zem)]ξ

(21.82)



21.4. PARAMETER MEASURED WITH A PROBE 267

With it, the exponent ξ is as follows:

ξ =
ln(w+)

ln(y)
and y = 1 + κ(zem) with (21.83)

w+ =
Ωvol,0,theo · y2

2
·

(
1 +

√
1 +

4Ωm,0

Ω2
vol,0,theo · y2

)
(21.84)

(2d) Our results are in precise accordance with observation.
The difference between the measured and the theoretical value
is 0.096 % only:

H0,theo(znear) = 73.11± 1.08
km

s ·Mpc
(21.85)

H0,obs,near = 73.04 (±1.01)
km

s ·Mpc
at 〈z〉 = 0.055 (21.86)

∆obs,theo =
H0,obs,near −H0,theo(znear)

H0,obs,near
= 0.096% (21.87)

Thereby, we do not execute any fit or introduce any hypothesis.

(2d1) We solve the observed discrepancy, the so-called Hubble
tension.

(2d2) We provide the physical basis for the energy density of
volume:

uvol,theo = ρvol,theo · c2 (21.88)

Thus, we solve the dark energy problem, see e. g. Cugnon
(2012). Thereby, we overcome the hypothetical character of the
cosmological constant Λ.

(2d3) We extend the isotropic GFV described by the FLE, so
that the Hubble constant in part (2c) additionally includes the
unidirectional LFV. Thereby, we show that the expansion of
space is based on the formation of volume, whereby that for-
mation is explained with our theory of the dynamics of volume,
see part (II).
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(2d4) The energy of the volume is a zero-point energy, ZPE, C.
(22).
(2d5) The energy of the volume represents a zero-point oscila-
tion. It represents a wave packet, C. (22) and section (14.5). In
contrast, the energy of a harmonic wave of the volume is zero,
C. (11).
(2d6) Our results predict the observed values H0,obs(zem) of the
Hubble constant as a function of the redshift of the emission
of the used probe, see part (2c). For the case of various ob-
served H0,obs(zem), our prediction is in precise accordance with
observation, see Fig. (21.3).
(3) In a homogeneous universe, a constant energy density of vol-
ume uvol can be derived, see THM (37) and (Carmesin, 2021d,
THM 22, part (3b)). On that basis, a steady state universe
could be conceivable. However, the time evolution of hetero-
geneity clearly excludes that possibility, as a result of theory
and in precise accordance with observation, Fig. (21.3).
(4) As H0,obs(z) is a function of time or z, it modifies the age of
the homogeneous universe t0,hom to the age of the heterogeneous
universe t0,het, according to (Carmesin, 2019b, Eq. (2.29) and
part (2c) in this THM.
(4a) The parameters Ωvol,0,theo = 2

3, Ωm,0 = 1−Ωvol,0,theo, σ8,0 =
0.8118±0.0089 and H0,without het = 66.88 (±0.92) km

s·Mpc, (Planck-
Collaboration, 2020, table 2, TT-mode) provide t0,het = 13.17 ·
(1± 0.19) · 109 years. This is in precise accordance with various
observations, Valcin et al. (2021), Robertson et al. (2023). For
comparison, t0,hom = 13.68 · (1± 0.19) · 109 years.
(4b) The parameters ΩΛ = 0.6847 ± 0.0073, Ωm,0 = 1 − ΩΛ,
σ8,0 = 0.8111 ± 0.0060, H0,without het = 67.36 (±0.54) km

s·Mpc, see
(Planck-Collaboration, 2020, table 2, col. 6), provide t0,het =
13.31 · (1± 0.21) · 109 years. This is in precise accordance with
observations, Valcin et al. (2021), Robertson et al. (2023). For
comparison, t0,hom = 13.8 · (1± 0.2) · 109 years.



Chapter 22

Dark Energy at ’Cosmic
Inflation’

22.1 Incompleteness of GR

Question: The scale factor can be analyzed as a function of
time, see Fig. (22.1). The graph shows: At early times, the
scale factor was small.

At small scale factors, the density is large. However, the den-
sity cannot be larger than the Planck density ρP , see glossary
or Carmesin (2019b). At what scale factor x1 does the density
of the universe ρ(t1) reach the value ρP? Is that scale factor x1

larger than the Planck length LP?

The present-day light horizon Rlh has been analyzed as a
function of time, see Fig. (22.2). For it, the values of Rlh(t)
at earlier times have been derived in the framework of GR, see
e.g. Carmesin (2019b, 2020b,a, 2021d,a); Heeren et al. (2020).

According to the laws of physics, the density cannot be larger
than the Planck density ρP = 5.155 · 1096 kg

m3 , and lengths as
small as the Planck length LP = 1.616·10−35 m can be observed,
see e.g. Carmesin (2017), Carmesin (2019b), Carmesin (2021a).
Moreover, corresponding to the laws of physics, the length can
be as small as the Planck length, see e.g. Carmesin (2017),
Carmesin (2019b), Carmesin (2021a).

Next, we compare the time evolution of the density ρ(t) and

269
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Figure 22.1: Time evolution of the scale factor. The time is pre-
sented in units of the Hubble time tH0

, while the scale factor is
shown in units of the Hubble length RH0

.

of the value of Rlh(t) of the light horizon in the universe. In
the framework of GR, the Planck density ρP = 5.155 · 1096 kg

m3 is
already achieved, when Rlh(t) is approximately equal to 0.003
mm, see Fig. (22.2). As a consequence, GR is not complete, as
GR does not describe the full physically possible time evolution
of Rlh(t), ranging from the Planck length LP = 1.616 · 10−35 m
to the present-day light horizon Rlh ≈ 4.1 · 1026 m.

Proposition 11 Incompleteness of GR

(1) The theory of general relativity, GR, describes the time evo-
lution of the light horizon Rlh(t) ranging from Rlh ≈ 0.003 mm
towards the present-day light horizon Rlh ≈ 4.1 · 1026 m.

(2) However, the physically observable lengths range from the
Planck length LP = 1.616 ·10−35 m towards the present-day light
horizon Rlh ≈ 4.1 · 1026 m.

(3) So GR is incomplete.
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Figure 22.2: Density limit of expansion of space: The time evo-
lution of Rlh according to general relativity, GR, (◦) ranges
from the present-day value 4.14 · 1026 m backwards to 0.003
mm, as at this point the density (�) achieves the Planck den-
sity ρP = 5.155 · 1096 kg

m3 (dashdotted), and no higher density is
physically possible.
However, the physically possible lengths can be as short as the
Planck length LP (loosely dotted). Hence the time evolution of
the GR is incomplete.
In contrast, we derive the complete time evolution of Rlh(t),
ranging from the current value 4.14 · 1026 m backwards to LP .
For it, we apply dimensional phase transitions (4) derived by
quantum gravity. Thereby, the phase transitions cause the ’cos-
mic inflation’. We explain it by the extremely rapid distance
enlargement in the early universe.
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22.2 Gravity at higher dimension

Idea: The law of Gaussian gravity (chapter 2) is based on the
isotropic emission of gravity by a mass or dynamical mass. That
law can be applied to dimensions D ≥ 3. In this section, we
derive the law of gravity at dimensions D ≥ 3. For it, we
emphasize that physics in dimensions D > 3 has been observed
in experiments with photons as well as in experiments with
electrons, see Lohse et al. (2018), Zilberberg et al. (2018).

22.2.1 Kinetic energy in D dimensions

In this section, we make transparent how the kinetic energy of
a mass m is naturally defined in D dimensions:

Ekin =
1

2m
Σj=D
j=1 p

2
j (22.1)

22.2.2 Gravity in D ≥ 3 dimensions

In this section, we show that the gravitational energy is natu-
rally defined in D ≥ 3 dimensions. For it, we remind that GRT
can be derived from Gaussian gravity, see (Carmesin, 2021d,
theorem 1). And Gaussian gravity can naturally be defined in
D ≥ 3 dimensions, see e. g. Fig. (22.3).

22.2.2.1 Gravity term for D ≥ 3

According to Gaussian gravitation, the gravitational fieldG∗(R)
at a distance R from a mass is proportional to 1/RD−1 (Fig.
22.3, and Gauss (1840)):

G∗ ∝ 1

RD−1
(22.2)

The same proportionality applies to the gravitational force F
which a mass M exerts on a mass m at the distance R. More-
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A′ = 2 · A

R′ =
√

2 ·R

G∗ · A = G∗′ · A′

Figure 22.3: Gaussian gravity of a mass or dynamic mass m: All
balls around m have the same flux G∗(R)·A(R). This means the
same product of the gravitational field G∗(R) and area A(R).
Consequently, we derive in D dimensions: G∗(R) ∝ 1

A(R) ∝
1

RD−1 .

over, the force is proportional to each of the masses:

F ∝ M ·m
RD−1

(22.3)

The proportionality factor is a gravitational constant for dimen-
sion D, GD:

F = −GD ·
M ·m
RD−1

(22.4)

The potential energy or gravitational energy is the integral of
the force. By DEF., the energy is zero in the limit R to infinity:

EG = −GD ·
M ·m

(D − 2) ·RD−2
(22.5)

The gravitational constant can be derived (see e.g. Carmesin
(2017), Carmesin (2019b)). The following holds:

GD = G · (D − 2) · LD−3
P We summarize : (22.6)
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Proposition 12 Gravitation in D dimensions

(1) Two objects at a distance R, with masses or dynamic masses
M and m, exert the gravitational force F = −GD · M ·mRD−1 on each
other in D ≥ 3 dimensions with GD = G · (D − 2) · LD−3

P .

(2) The corresponding energy is: EG = −GD · M ·m
(D−2)·RD−2

(3) As kinetic and gravitational energy are naturally defined in
D ≥ 3 dimensions, the conditions must be analyzed, at which
space at dimensions D > 3 is more stable than the present-day
space at D = 3, see e. g. Carmesin (2017), Carmesin (2018a),
Carmesin (2021d).

(4) When the space changes from a dimension D + s to a di-
mension D, then s directions of translation symmetry are lost.
Thus, such a transition is a symmetry breaking phase transi-
tion, see Landau and Lifschitz (1979), we call it dimensional
phase transition.

22.2.2.2 Special radii at scaled densities ρ̃D

Question: At high density, radiation is an essential content in
the volume, see e. g. Hobson et al. (2006), Carmesin (2019b).
Moreover, at sufficiently high density, small black holes form
spontaneously, see (Carmesin, 2020b, section 4.4.7). What are
the radius b of a black hole and the radius aM that radiation
with dynamic mass M requires, as a function of the density ρ̃D.

Radius aM depending on the scaled density: We derive how the
radius aM depends on the scaled density ρD. We use natural
units (see table 25.3).

According to the redshift, the dynamic mass is proportional
to the inverse wavelength Mdyn ∝ 1

aM
. For example, for aM =

LP , there is Mdyn = MP

2 . Both relations result in:

1

2ãM
= M̃dyn (22.7)
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Here we use the term for the density, where VD denotes the
volume of a hyper ball with radius 1:

ρD =
Mdyn

VD · aD
(22.8)

Hereby the volume of a unit ball is as follows:

VD =
πD/2

Γ(1 +D/2)
; Γ(x+ 1) = Γ(x) · x; Γ(1) = 1; Γ

(
1

2

)
=
√
π

(22.9)
We use the Planck density related to a ball ρ̄D,P = MP

VD·LDP
(table

25.3). So we get:

ρ̃D =
ρD
ρ̄D,P

=
M̃dyn

ãDM
(22.10)

In total we get:

1

2ãM
= M̃dyn = ρ̃D · ãDM (22.11)

Resolved we get:

ãM = (2ρ̃D)−1/(D+1) (22.12)

Schwarzschild radius: We determine the Schwarzschild radius
b depending on the density. We proceed like Michell (Michell
(1784)). We equate the kinetic energy 1

2M ·v
2 with the potential

energy and choose the velocity of light c. So we get:

1

2
· c2 =

GD ·m
(D − 2) · bD−2

(22.13)

We use GD = G · (D − 2) · LD−3
P and we use natural units. So

we get (table 25.3):

b̃ = (2ρ̃D)−1/2 (22.14)
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A

B

Figure 22.4: At high density near the Planck scale, ρ ≈ ρP , the
space exhibits a grainy structure (dots) at the scale of the
Planck length, L ≈ LP . At such a density, a layer of shortcuts
(dotted) can form spontaneously. The corresponding critical
density is derived in S. (22.3.1).

22.3 Phase transitions in the early universe

Question: If the density is increased in a system of masses,
then the distances between masses decrease, so that the at-
tractive forces between the masses increase. Are these forces
sufficiently large to fold the space to a higher dimension, see
Fig. (22.4)?

22.3.1 Critical density ρcr.sc. for shortcuts

In this section, we derive an example of a dimensional phase
transition: At a critical density ρcr.conn., connections of a length
dL ≈ LP and with the volume dV ≈ L3

P form spontaneously,
for an illustration of several formed connections see Fig. (22.4).
Thereby the dimension is increased and a dimensional phase
transition takes place.

Condition for the transition: If the rate of change of the volume
inside the connection ε̇inside = δV

δt·dV |inside is negative, then the
shortcut permanently looses volume, so it vanishes. If the rate
of change of the volume inside the connection ε̇inside would be
larger than zero, then the shortcut would permanently get new
volume, so that can happen for a short time only. If the rate
of change of the volume inside the connection ε̇inside is equal to
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zero, then the shortcut contains a constant amount of volume,
correspondingly, the shortcut is stable. This shows that the
shortcut becomes stable at the condition ε̇inside = 0. Hence, at
the critical density ρcr.conn., the rate of change of the volume
inside the connection δV

δt·dV |inside is zero.

Contributions to the rate ε̇inside: Some volume flows from the
connection to neighboring regions A and B, see Fig. (22.5),
at a rate ε̇out. Similarly, some volume flows from neighboring
regions A and B to the connection at another rate ε̇in. Thirdly,
some volume forms in the connection at a rate ε̇formation. Next,
we analyze these rates in detail.

Rate of outward flow: The relative volume propagates within
the available space, see THM (18). So the volume dV of the
connection in Fig. (22.5) can escape towards the volumes A and
B in that figure. The volume dV of the connection can escape
at the velocity of light in these two directions, see Fig. (22.5).
At the Planck scale, that volume corresponds to one quantum.
An escape towards the volume A in Fig. (22.5) takes the time
dt = LP/c = tP and has the probability 50 %, whereby tP is the
Planck time. The same holds for an escape towards the volume
B in Fig. (22.5). Thus, during the time tP , the volume dV of
the connection leaves that volume. So the rate of outward flow
is as follows:

δV

δt
|out = −dV

tP
(22.15)

We solve for the rate per volume:

ε̇out =
δV

δt · dV
|out = − 1

tP
(22.16)

Rate of inward flow: As the cube of length LP at a region A has
six equal surfaces, one of which is directed to the connection, the



278 CHAPTER 22. DARK ENERGY AT ’COSMIC INFLATION’

δV

δV

dV

A ......

B ......

Figure 22.5: Flow of volume δV from dV : We assume that the
volume essentially flows to existing volume. In order to get an
estimation we analyze cubes with length L ≈ LP .

sixth part of its rate δV
δt·dV |from A propagates to the connection:

ε̇|from A = − 1

6 · tP
(22.17)

So the rate propagating from A to the connection is positive
and has the absolute value of the above term:

ε̇in,from A = +
1

6 · tP
(22.18)

The same rate propagates to the connection coming from B. So
we derive:

ε̇in =
2

6 · tP
(22.19)

Rate of formation of volume: Additionally, the density ρ of the
connection forms volume. The exact rate depends on the sym-
metry. We model and analyze the rate for the unidirectional
formation of volume, as it may propagate orthogonal to the
surface of the cube. So we get, see THMs (17 and 8):

ε̇formation =
√

8π ·G · ρ (22.20)
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Sum of rates: We add the above three rates. So the total rate
is as follows:

ε̇inside = ε̇out + ε̇in + ε̇formation (22.21)

We insert the corresponding terms and set the rate to zero:

ε̇inside =
−1

tP
+

2

6 · tP
+
√

8π ·G · ρ = 0 (22.22)

We solve for the root in the above Eq.:√
8π ·G · ρ =

2

3 · tP
(22.23)

We solve for the density:

ρ =
1

18π
· 1

t2P ·G
(22.24)

The second fraction in the above Eq. (22.24) is equal to the
Planck density. So we derive the following for the critical den-
sity of spontaneous connection formation, ρcr.conn.:

ρcr.conn. =
1

18π
· ρP = 0.018 · ρP (22.25)

In terms of the Planck density for a ball ρ̄P = ρP · 3/(4π) (see
appendix), we get:

ρcr.conn. =
2

27
· ρ̄P = 0.074 · ρ̄P (22.26)

Theorem 40 New volume can form new connections.

In a D-dimensional space, new connections can form as follows:

(1) Space has at least three dimensions. The reason is as fol-
lows: Quanta of volume propagate in one direction. Addition-
ally, in an appropriate coordinate system, these quanta exhibit



280 CHAPTER 22. DARK ENERGY AT ’COSMIC INFLATION’

0.2 0.3 0.4 0.5

3

9

30

90

300

ρ̃D,cr,conn.

D

Figure 22.6: Dimension D as a function of the critical densities.

diagonal elements of the volume - tensor in the D − 1 trans-
verse directions, as the volume requires an extension in each
direction. Thereby, the trace of the D − 1 transverse directions
is zero, as there forms no volume in these directions. For it,
there are at least two elements of the volume - tensor in the
transverse directions, so these exhibit trace zero. Consequently,
space has at least three dimensions.

(2) In order to analyze the dynamics of new connections in
Fig. (22.5), we analyze a conceivable two-dimensional space. In
it, new connections forming three-dimensional space can form
spontaneously at densities above the critical density ρ̃cr.conn. =
2
27.

(3) If the density in a system is sufficiently increased, then
the system experiences a sequence of critical densities ρ̃D,cr,conn.,
at which a phase transition from D to D + 1 takes place, see
(Carmesin, 2021a, Eq. 3.93) and Fig. 22.6):

ρ̃D,cr,conn. =
1

2
·
(

D

(D + 1)3/2

) 4
D

(22.27)

Thus, for the case D = 2 in part (2), Eq. (22.27) provides
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Figure 22.7: 216 magnetic balls model local objects or observable
regions at high density and illustrate the relation between the
distance and the dimension D: If the dimension increases from
two (right) to three (left), then the largest distance decreases.
More generally and conversely, a decrease of the dimension D
implies an increase of the largest distance.

ρ̃2,cr,conn. = 1
2 ·
(

2
33/2

) 4
2 = 2

27.

(4) In particular, three-dimensional space emerges from four-
dimensional space at the following critical density:

ρ̃3,cr,conn. =
1

2
·
(

3

43/2

) 4
3

= 0.1352 (22.28)

22.3.2 Dimensional horizon Dhorizon

In the time evolution of the universe, the density was high ini-
tially, and it decreased as a function of the time. So the dimen-
sion D was high originally near or at the Planck scale. Then
the density decreased according to the FLE1, and whenever a
critical density was reached, a dimensional phase transition re-
duced the dimension of space. So D decreased until D = 3
was achieved. That process is called dimensional unfolding
or cosmic unfolding, Carmesin (2021d), Carmesin (2017).

During the process of dimensional unfolding, the dimension
D decreased, and thereby the distances were enlarged, see Fig.
(22.7). At a transition from a dimension D + s to a dimension

1For it, a version of the FLE applicable in dimension D has been derived, Carmesin
(2021a)).
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D, the distances enlarge by a so-called dimensional distance
enlargement factor ZD+s→D, (Carmesin, 2021d, 8.2.9). The
space that is enclosed in the actual light horizon achieved a
largest dimension, the so-called dimensional horizon, Dhorizon

or shortly Dhori, (Carmesin, 2021d, 8.2.10). Thereby the follow-
ing relation holds:

ZDhori→D=3 = 2(Dhori−3)/3 (22.29)

In order to determine the dimensional horizon, we use the
complete scale factor kDhori→t0 ranging from the dimensional
horizon until today. If three-dimensional space expands accord-
ing to a scale factor kρ̃r,1→ρ̃r,2 ranging from a state at a density of
radiation ρ̃r,1 towards a state at a density of radiation ρ̃r,2, then
the volume increases by the factor k3

ρ̃r,1→ρ̃r,2, and the energy of
radiation decreases by the factor 1/kρ̃r,1→ρ̃r,2, according to the
redshift. Thus, the density of radiation ρ̃r,1 decreases by the
factor 1/k4

ρ̃r,1→ρ̃r,2:

ρ̃r,2 = ρ̃r,1/k
4
ρ̃r,1→ρ̃r,2 or kρ̃r,1→ρ̃r,2 =

(
ρ̃r,1
ρ̃r,2

)1/4

(22.30)

At the onset of dimensional transitions, the density of radiation
is already near the Planck density. Thence, the density of radi-
ation does only slightly change in the era of dimensional phase
transitions. Thus, at a good approximation, Eq. (22.30) can
be applied to the full expansion ranging from the dimensional
horizon towards the present-day state, (Carmesin, 2021d, Eq.
8.79):

kDhori→t0 ≈
(
ρ̃r,Dhori

ρ̃r,t0

)1/4

≈ 2.96 · 1031 (22.31)

Accordingly, the scale factor kρD=3,c→t0 ranging from the state
at the dimensional phase transition at three-dimensional space
towards the present-day state is almost the same as kDhori→t0:

kDhori→t0 ≈ kρD=3,c→t0 (22.32)
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Additionally, we apply the complete enlargement factor qDhori→t0
ranging from the dimensional horizon until today, and we form
the fraction:

ZDhori→D=3 =
qDhori→t0
kDhori→t0

(22.33)

Hereby, the complete enlargement ranges from the Planck
length LP towards the light horizon RLH . The corresponding
complete enlargement factor is as follows, (Carmesin, 2021d,
Eq. 8.80):

qDhori→t0 =
RLH(t0)

LP
≈ 2.56 · 1061 (22.34)

The exact value of the dimensional horizon depends on the de-
tails of the dimensional phase transitions, and these depend on
the details of the fluid in the early universe. However, all realis-
tic cases show that the actual value of the dimensional horizon
is as follows, (Carmesin, 2021d, 8.2.10):

Dhori ∈ [301, 302] (22.35)

The dimensional distance enlargement factor is shown as a func-
tion of the dimension in Fig. (22.8).

For the case of the Bose gas, the critical density at the di-
mensional horizon is practically equal to the maximal possible
value 0.5:

ρ̃Dhori,c ≈ 0.5 (22.36)

For the more realistic case of the binary fluid in the early
universe, the dimensional horizon is as follows, see (Carmesin,
2021d, Eq. 8.82):

Dhori ≈ 301.3 (22.37)

22.4 Quanta of dark energy

Questions: The volume did already exist at the dimensional
horizon. What is the energy of quanta of volume at the Planck
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Figure 22.8: Dimensional distance enlargement factor ZDhori→D=3
as a function of the dimensional horizon Dhori.

scale? How did that energy of quanta of volume evolve during
cosmic unfolding? What are the directions of polarization of
these quanta? What is the density of volume of these quanta
of volume?

22.4.1 Causal limitation provides ZPE

As the volume propagates at v = c, it is quantized, and the
energy is related to the wavelength as follows (chapter 4):

Evol,Dhori
=

~ · c
λvol,Dhori

(22.38)

The available space is limited by the causal horizon LP . So, the
lowest energy is at λvol,Dhori

= 2LP :

Evol,Dhori
=

~ · c
2LP

=
EP

2
(22.39)

22.4.2 Increase by dimensional unfolding

During the dimensional phase transitions ranging from the di-
mensional horizon Dhori towards three-dimensional space D =
3, the space is enlarged by the dimensional distance enlargement
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factor ZDhori→3. As space is formed by the quanta of volume,
their wavelength is enlarged by that factor. Consequently, their
energy is divided by that factor.

At each dimension, there are D − 1 transverse directions,
each representing a direction of polarization, see THM (40, part
(1)). Thus, 300 transverse directions of polarization at the di-
mensional horizon Dhori = 301 reduce to two directions of po-
larization at the present-day three-dimensional space, D = 3.
Thence, the energy is reduced by the polarization factor:

Dhori − 1

2
= 150 (22.40)

Altogether, at the emergence of three-dimensional space at the
critical density ρD=3,c, the energy of a quantum of volume is as
follows:

Evol,ρD=3,c
= Evol,Dhori

· 1

150 · ZDhori→3
=

EP

300 · ZDhori→3
(22.41)

22.4.3 Dimensional distance enlargement factor

The dimensional distance enlargement factor is as follows, see
Eqs. (22.33, 22.34):

ZDhori→3 =
RLH

LP · kρD=3,c→t0
(22.42)

Thereby, the light horizon is as follows:

RLH =
KLH · c
H0

with KLH =
RLH

RH0

= 2.9926 (22.43)

Hereby, the value of H0 of the homogeneous universe is ap-
propriate, as the early universe has been very homogeneous,
see chapter (21). Additionally, the expansion of space can be
described with help of the density of radiation. As radiation
exhibits redshift, the expansion factor is as follows, Carmesin
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(2019b), Hobson et al. (2006), Eqs. (22.30, 22.31, 22.32):

kρc→t0 =

(
ρD=3,c

ρr,0

)1/4

=

(
ρ̃D=3,c

ρ̃r,0

)1/4

(22.44)

Hereby, the present-day density can be described with help of
the density parameter, Carmesin (2019b), Hobson et al. (2006):

ρr,0 = Ωr,0 ·H2
0 ·

3

8πG
with Ωr,0 = 9.265 · 10−5; ρ̃r,0 =

ρr,0
ρ̄P

(22.45)

22.4.4 Enlargement of wavelength of quanta of volume

If the dimension changes from the dimensional horizon Dhori

to a dimension D, then the following dimensional distance en-
largement factor occurs, see (Carmesin, 2021d, THM 26):

ZDhori→D = 2
Dhori−D

D (22.46)

Consequently, if the dimension changes from a dimension D1

to a dimension D2, then the following dimensional distance en-
largement factor occurs:

ZD1→D2
= ZDhori→D2

/ZDhori→D1
(22.47)

Thereby, the wavelength of a quantum of volume changes as
follows:

λvol,D2
= λvol,D1

· ZD1→D2
(22.48)

22.4.5 Density of volume

At the dimensional horizon, the available space is a hyperball
with radius LP . During the dimensional phase transitions to-
wards three-dimensional space, the radius is enlarged by the
dimensional distance enlargement factor ZDhori→3. Thus, the
enlarged radius is the following product:

Renlarged = LP · ZDhori→3, (22.49)
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Thence, the enlarged volume is as follows:

Venlarged = R3
enlarged ·

4π

3
= L3

P · Z3
Dhori→3 ·

4π

3
(22.50)

Thence, the density at three-dimensional volume at ρc is the

dynamical mass
Evol,ρD=3,c

c2 divided by the enlarged volume:

ρvol,ρD=3,c
=
Evol,ρD=3,c

c2

1

L3
P · Z3

Dhori→3
4π
3

(22.51)

We use the energy in Eq. (22.41):

ρvol,ρD=3,c
=

EP/c
2

300ZDhori→3

1

L3
P · Z3

Dhori→3
4π
3

(22.52)

The Planck density of a ball is as follows, see appendix:

ρ̄P =
EP/c

2

4π
3 L

3
P

(22.53)

Thus, the density of volume is as follows:

ρvol,ρD=3,c
= ρ̄P ·

1

300 · Z4
Dhori→3

. We summarize : (22.54)

Theorem 41 ρvol,ρD=3,c
emerging at phase transition

(1a) The quanta of volume have one direction of propagation
and D − 1 directions of transverse polarization.

(1b) As a consequence of part (1a), space has at least three
dimensions, D ≥ 3.

(2a) At the end of ’cosmic inflation’, there occurs a dimensional
phase transition towards three-dimensional space, D = 3.
That transition takes place at a critical density ρD=3,c.

(2b) At the dimensional phase transition at the density ρD=3,c,
there emerge quanta of volume with the following energy:

Evol,ρD=3,c
=

EP

300 · ZDhori→3
(22.55)
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(3a) At the dimensional phase transition at the density ρD=3,c,
the emerging quanta of volume have the following density of
volume:

ρvol,ρD=3,c
=

H2
0

4πG
· ρ̃D=3,c · 2.6915 (22.56)

This result is obtained by combining the above relations.

(3b) Thereby, the fraction in the above equation is equal to the
density of volume ρvol,theo occurring in the process of permanent
formation of volume in three-dimensional space, see THM (36):

ρvol,ρD=3,c
= ρvol,theo · ρ̃D=3,c · 2.6915 (22.57)

(3c) If the critical density is

ρ̃D=3,c =
1

2.6915
= 0.3715, (22.58)

Then the two densities are equal:

the density of volume ρvol,ρD=3,c
emerging in the process of cosmic

unfolding (Eq. 22.57)

and the density of volume ρvol,theo occurring in the process of per-
manent formation of volume in three-dimensional space (THM
36).

(3d) As the density is a classical quantity, it depends on the
universal constants G and c only, whereas the density does not
depend on the Planck constant, see Eq. (22.57).

(4) The dimensional phase transition at ρvol,ρD=3,c
has been

modeled by four independent models:

(4a) In a Bose gas, the critical density has the following value
ρvol,ρD=3,c

= 0.435, Carmesin (2021d), Sawitzki and Carmesin
(2021).

(4b) In a model using two representative objects, similarly as in
the van der Waals model, the critical density has the following
value ρvol,ρD=3,c

= 0.11569, (Carmesin, 2021a, section 3.4.5).
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(4c) In a model describing volume connecting volume, the crit-
ical density has the following value ρvol,ρD=3,c

= 0.1352, see for
instance (Carmesin, 2021a, THM 1).

(4d) In a model using two droplets, the critical density has the
following value ρvol,ρD=3,c

= 0.37, see (Carmesin and Schöneberg,
2022, Fig. 4).

Altogether, the models of that phase transition provide the fol-
lowing interval for the critical density:

ρ̃D=3,c ∈ [0.11569, 0.435] (22.59)

The value ρvol,ρD=3,c
= 0.3715 of the critical density provides

equality of dark energy at D > 3 and at D = 3.
That value ρvol,ρD=3,c

= 0.3715 is in the interval of modeled
values.

Moreover, that value ρvol,ρD=3,c
= 0.3715 is practically equal

to the value obtained in the droplet model ρvol,ρD=3,c,droplet = 0.37.

(5) The energy of volume is quantized:

(5a) The total classical value of the energy of volume is zero, as
kinetic and potential energy densities cancel each other.

(5b) The quanta of volume exhibit a zero-point energy, ZPE.
At the critical density ρD=3,c, each quantum of energy has the
following value:

Evol,ρD=3,c
=

EP

300 · ZDhori→3
= 43.9 µ eV (22.60)

(5c) In general, a quantum of volume with a wavelength λ ex-
hibit a zero-point energy fulfilling the following relation:

Evol =
h · c
λ

(22.61)

(5d) Quanta of volume can take part in phase transitions. Such
phase transitions can provide higher dimensional space, matter,
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Carmesin (2021a), Carmesin (2022c), and fundamental inter-
actions, Carmesin (2021e), Carmesin (2022e).

(6) The volume extends as follows:

(6a) In D-dimensional space, each quantum of volume has D−1
transverse directions of polarization and one direction of propa-
gation. In this manner, each quantum fills D-dimensional vol-
ume.

(6b) A quantum of energy δEvol has the following 3D-volume:

δV =
δEvol

uvol
= 2πR2

H0

2G · δEvol/c
2

c2
= 2 · πR2

H0
·RS (22.62)

RS =
2G · δEvol/c

2

c2
(22.63)

(6c) A quantum of energy Evol,ρD=3,c
has the following wave-

length:

λ = LP ·300·ZDhori→3 = 6.616·10−35 m·300·9.26·1029 = 4, 5 mm
(22.64)

(6d) A quantum of energy Evol,ρD=3,c
has the following volume:

δV = 2 · πR2
H0
·RS = 1.4 · 10−14 m3 = 1.4 · 10−5 mm3 (22.65)

(7) As quanta of volume are zero-point oscillations, ZPOs, with
ZPE, their energy is not available for transformation to other
objects. Thus, the universality of the position factor does not
apply, see THM (4). Hence, the quanta of volume do NOT
exhibit a redshift in the vicinity of a mass or dynamical mass.

In contrast, the quanta of volume exhibit a change of the
wavelength at each dimensional phase transition. An increase of
the wavelength of a quantum of volume at a dimensional phase
transition is called redchange, glossary. Similarly, radiation
does not exhibit a redshift or a redchange at a dimensional phase
transition.
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(8) If quanta of volume form a mass by a phase transition,
then the transformed quanta are no longer ZPOs, they are at
transformed or excited states. Thus, the transformed quanta
have energy that is available for transformation to other objects.
Thence, the universality of the position factor does apply, see
THM (4).

(9) Altogether, the dark energy in three-dimensional space and
the dark energy at ’cosmic inflation’ are derived in a unified
manner. Hereby, the derived results are in precise accordance
with observation. Thereby, no hypothesis has been introduced
at all. Moreover, no fit is executed. For it, the parameters of
the volCDM-model have been derived from first principles in
Carmesin (2021a).

Proof: The proof is provided within the theorem.

In order to provide additional support, the derivation of Eq.
(22.57) is elaborated here in detail: According to Eq. (22.54),
the density of volume is as follows:

ρvol,ρD=3,c
= ρ̄P · Z−4

Dhori→3 ·
1

300
(22.66)

In the above density (Eq. 22.66), we express the dimensional
distance enlargement factor ZDhori→3 with Eq. (22.42):

ρvol,ρD=3,c
= ρ̄P ·

L4
P · k4

ρD=3,c→t0
R4
LH

· 1

300
(22.67)

In the above density (Eq. 22.67), we include the terms for the
light horizon (Eq. 22.43) and for the scale factor (Eq. 22.44):

ρvol,ρD=3,c
= ρ̄P ·

L4
PH

4
0

c4K4
LH

· ρ̃D=3,c

ρ̃r,0
· 1

300
(22.68)

In the above density (Eq. 22.68), we include the terms for the
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density of radiation (Eq. 22.45)2:

ρvol,ρD=3,c
= ρ̄2

P ·
L4
PH

4
0

c4K4
LH

· G
H2

0

ρ̃D=3,c

Ωr,0

8π

3
· 1

300
(22.69)

We simplify the above term:

ρvol,ρD=3,c
= (ρ̄2

PL
4
P ) · H

2
0

c4
·G ρ̃D=3,c

300Ωr,0K4
LH

8π

3
(22.70)

According to the Planck units, see appendix, the above bracket
is equal to

(
3

4π

)2 c4

G2 . Thus, the density (Eq. 22.70) is as follows:

ρvol,ρD=3,c
=

H2
0

4πG
· ρ̃D=3,c

300Ωr,0K4
LH

8π

3

9

4π
or (22.71)

ρvol,ρD=3,c
=

H2
0

4πG
· ρ̃D=3,c

50Ωr,0K4
LH

=
H2

0

4πG
· ρ̃D=3,c · 2.6915, q.e.d.

(22.72)

2We remind that Ωr,0 has been used to quantify the redshift experienced by radia-
tion. More generally, an analysis of all energy transformations, including redshifts and
redchanges, ranging from the early universe at the Planck scale towards the present-day
universe, see Carmesin (2020b) or Carmesin (2021f).



Chapter 23

Derivation of GR

In this chapter, we show that the Einstein field equation, EFE,
is a consequence of the spacetime quadruple, SQ, in a semi-
classical limit. The EFE describes the curvature of spacetime.
Objects exhibit geodesic motion. That motion is obtained from
the principle of extremal action derived from the SQ in a semi-
classical limit.

23.1 Curvature of spacetime is included in

the SQ

The spacetime quadruple, SQ, includes both essential distances,
the gravitational parallax distance, dGP and the light-travel dis-
tance dLT .

The light-travel distance dLT includes the curvature of space-
time. So, the SQ includes theories that describe the curvature
of spacetime. There are several such theories. Early theories
about the curvature of spacetime have been proposed by Ein-
stein (1911a) or Nordstrom (1913). The presently used and very
successful theory of general relativity, GR, has been proposed
by Einstein (1915) and Hilbert (1915). That theory can be rep-
resented by the Einstein field equations, see Einstein (1915) or
e. g. (Hobson et al., 2006, section 19.12).

So, the question arises, whether GR and the EFE can be

293
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derived from the SQ. By construction, GR is a non-quantized
(classical or semiclassical) theory, Lee (1997), Einstein (1915),
Hilbert (1915). In contrast, the SQ includes the quantization
in chapters (4, 14). So, GR and the EFE can only be derived
in a semiclassical limit within the SQ.

23.2 Semiclassical limit via path integrals

Such a semiclassical limit can be obtained by the path inte-
gral method Feynman (1948), (Ballentine, 1998, section 4.8).
Hereby, the concept of a path is a semiclassical concept, as
classical paths do not exist according to the Heisenberg uncer-
tainty principle, which is a consequence of the postulates of QP,
(Ballentine, 1998, section 8.4), (Kumar, 2018, section 3.10).

In the path integral method, all paths x(τ) connecting an ini-
tial point (t0, x0) and a final point (t, x) are considered. For each
path, an action S[x(τ)] is developed. If the quantum system is
initially at (t0, x0), then the SEQ implies that the probability
to find the system at the final point (t, x) is proportional to
|f(t0, x0, t, x)|2 with (Ballentine, 1998, Eq. 4.55):

f(t0, x0, t, x) =

∫
exp(i · S[x(τ)]/~)dx(τ) (23.1)

Hereby, the integral is the functional integral over all paths x(τ).

23.3 Semiclassical limit at stationary action

In the path integral method, the semiclassical limit is obtained
as follows (Ballentine, 1998, p. 120): The semiclassical limit
holds, roughly speaking, when the classical action S[x(τ)] is
much larger than the quantum action ~. In that case, small
changes of a path may result in a change of the phase in Eq.
(23.1) by π, so that the sign of the integrand changes and a
cancellation occurs. So, most paths cancel out, and only a
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path x(τ) with an extremal action S[x(τ)] remains. The ex-
tremal action is also called stationary action, including least
action. If there are several paths with the same extremal phase
or action, then these paths remain. Such a path can be de-
termined searching the extremal action. That method is also
called the principle of stationary (or least) action, PLA, e. g.
Fermat (1657), Landau and Lifschitz (1971), Feynman (1985),
Weinberg (1996), Grebe-Ellis (2011), Carmesin (2022e). In this
manner, the PLA is a consequence of quantum physics. Ac-
cordingly, the PLA is a consequence of the SQ. Moreover, the
PLA provides a semiclassical limit of the SQ.

23.4 Most simple action

Curved spacetime can be described by a most simple action.
That most simple possible action is the Einstein-Hilbert action,
see e. g. Hilbert (1915), Landau and Lifschitz (1971), (Hobson
et al., 2006, sections 19.8-19.11).

In physics, it is a usual concept to describe a system by
an action that is complicated enough to describe the system
under investigation, and that is the most simple action that
can describe the system under investigation. That principle of
a most simple action is not excluded by the SQ, so it is included
in the SQ.

The analysis shows that the Einstein-Hilbert action provides
the EFE, see e. g. Hilbert (1915), Landau and Lifschitz (1971),
(Hobson et al., 2006, sections 19.8-19.11). In this sense, the
EFE is a consequence of the SQ. We summarize our result:

Theorem 42 The SQ implies the EFE

(1) The SQ includes the light-travel distance dLT . So, the SQ
includes curved spacetime and theories of GR.

(2) The SQ implies the postulates of QP. So, the SQ implies
the PLA in the semiclassical limit.
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(3) The SQ includes the principle to describe a system with
the simplest possible action that covers the phenomena of the
system. So, the SQ includes the Einstein-Hilbert action as a
possible description of curved spacetime according to the usual
GR.

(4a) As a consequence, the SQ includes the Einstein-Hilbert ac-
tion for the description of the usual GR.

(4b) The SQ implies the quantization of volume and QP. Thus,
the SQ implies the PLA as a semiclassical consequence.

(4c) The SQ includes the Einstein-Hilbert action in (4a), and
the PLA in (4b), the application of which provides the EFE. In
this manner, the SQ implies the EFE in the semiclassical limit.

(5) And in this manner, the SQ provides the foundation of the
applicability of the PLA to the Einstein-Hilbert action, whereas
in usual GR, that applicability is assumed without foundation,
see e. g. Hobson et al. (2006).

(6) Moreover, the SQ includes essential phenomena beyond the
usual GR, see for instance chapters (21, 4, 14).



Chapter 24

Discussion

24.1 Achieved key results

Based on fundamental principles of physics, we derive the the-
ory of the dynamics of volume in nature, including the
formation of volume, see part (II). For it, we use relativity and
gravity, see C. (2), in order to derive the dynamics of the vol-
ume. We will see that volume is an essential quantity of its own,
providing curvature, gravity, transformations, phase transitions
and quanta. Using that theory, we derive the following results
and answers in a unifying manner:

(1) We derive the curvature and expansion of spacetime
proposed in a semiclassical manner in general relativity, GR,
see part (II) and C. (3, 5, 6, 23). In this manner, we over-
come the semiclassical character of present-day GR. Moreover,
in present-day GR, the density of Λ ρΛ has one observational
value ρΛ,obs. Planck-Collaboration (2020) observed ρΛ,obs =

0.679·(1±0.013)· 3H
2
0

8πG , see THM (36). However, present-day GR
cannot test that observed value by theory. Thus, the concept
of the density ρΛ in present-day GR cannot be falsified, Pop-
per (1974). Thus, the concept of the density ρΛ in present-day
GR has a hypothetical character. This hypothetical character
of dark energy in present-day GR is overcome by our theory, as
we derive the value ρvol,theo = 2/3 in THM (36).

297
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(2) Similarly, proposed alternative theories of the density ρΛ

use fit parameters, or they use a hypothesis, see (Kamionkowski
and Riess, 2023, section 4), or they use a ’scale parameter that
must ultimately be determined with input from measurements’,
(Schulz, 2020, p. 22 and p. 67). These results cannot be falsi-
fied, as they explain one observable quantity only, ρΛ, whereby
they use fit parameters or hypotheses or fitted scale parame-
ters. Accordingly, these alternative theories remain hypotheti-
cal. In contrast, our dynamics of the volume provides ρΛ, ρvol
and ρhet,rqui without any fit, without any hypothesis, without
any scale parameter, with a full derivation from fundamental
principles of physics and based on volume, which can be mea-
sured and which is an element of physical reality, see DEF (15).

(3) Using the dynamics of volume, we derive the postulates of
quantum physics, see chapters (4, 14). Thereby, we overcome
the hypothetical character of quantum physics.

(4) Using the dynamics of volume, we show that the relative ad-
ditional volume, together with volume, is the entity in which
electromagnetic waves propagate, see C. (7, 8, 11).

(5) Using the dynamics of volume, we derive the Schrödinger
equation, C. (14). Furthermore, we derive generalizations of the
SEQ, see part (II) and C. (22).

(6) Using the dynamics of volume, we show that the rate of rel-
ative additional volume has the properties of the wave function
of volume and of matter, C. (14). Accordingly, the wave func-
tion in quantum physics in postulate (1) is a normalized
rate of relative additional volume. In this manner, we overcome
the hypothetical character of the wave function in QP.

(7) Using the DV, we show that the relative additional volume
exhibits a transient phenomenon that explains the nonlocal
character of wave functions in QP, C. (16):

A harmonic RGW fulfills 0 =
ε̇2
Lc

2

8πG−
(~G∗)2

8πG = ukin−ugrav. = u = 0,
or E = 0, THMs (13, 14, 19). Thus, a harmonic RGW has no in-
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ertia and can achieve an unlimited phase velocity vp, THM (12).
These RGWs provide an infinitely rapid transient phenomenon,
which changes from one solution of the SEQ to another solu-
tion of the SEQ, THM (34). Hence, transient phenomena
are nonlocal as vp is not limited, neither by inertia nor by
the DEQ (12). In contrast, a wave packet of volume exhibits a
nonzero ZPE, E > 0, THMs (22, 29). Thus, such a wave packet
has inertia and zero rest mass. So, the wave packet propagates
at the group velocity vg = c, according to SR. Hence, wave
packets propagate at vg ≤ c.
(8) Einstein proposed a principle of locality for unmediated pro-
cesses. So, the principle does not apply to the observed nonlo-
cality of quanta, as that nonlocality is mediated by volume, as
volume represents the wave function, C. (16). Thus, Einstein’s
principle of locality is not violated by the nonlocality of
quanta. Presumably, Einstein was aware of the fact that his
locality in relativity relies on unmediated processes. But he did
not know that processes in nature are mediated by volume.
(9) Using the dynamics of volume in a homogeneous and in a
heterogeneous universe, we derive and explain the various ob-
served values of the Hubble constant, C. (19, 20, 21, 22). In
this manner, we overcome the present-day insufficient under-
standing of the Hubble tension and of the related rate of
expansion of space. Moreover, thereby, we predict the Hubble
constant H0,obs(z) as a function of the redshift z, C. (21). With
it, we derive the dynamics of our heterogeneous universe:
(9a) Usual cosmological models use the cosmological principle:
a homogeneous and isotropic universe, Hobson et al. (2006). In
such a model, the rate of expansion is described by the following
Hubble parameter as a function of the redshift z, see Eq. (5.27):

H(z) = H0

√
ΩΛ + Ωm,0(1 + z)3 + Ωr,0(1 + z)4 (24.1)

Hereby, we apply Ωk,0 = 0. In such models, the Hubble param-
eter H0 is a constant.
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(9b) However, our universe is heterogeneous. Thus, in general,
the factor H0 in Eq. (24.1) is the following function of z:

H0(z) =
H(z)√

ΩΛ + Ωm,0(1 + z)3 + Ωr,0(1 + z)4
(24.2)

If an observer attempts to measure the factor H0 in Eq. (24.1)
in our heterogeneous universe, then the observer will measure
the value of H0(z) in Eq. (24.2). For it, the observer uses
radiation that has been emitted at a calendar date z = zem.
That radiation shows the state of the universe at z = zem. Thus,
that radiation shows H0(z) at z = zem: H0(zem). We derived
that value in C. (21). Hence, the measured value H0(zem) and
Eq. (24.1) provide the rate of expansion, see THM (39):

H(z) = H0(z)
√

ΩΛ + Ωm,0(1 + z)3 + Ωr,0(1 + z)4, with (24.3)

H0(z) = H0,without het ·
√

Ωm,0 + ΩΛ · [1 + κ(z)]ξ, with (24.4)

the ratio of rates, THM (39)

κ(z) =
σ8,0 · Ωm,0

2ΩΛ,0 · (1 + z)2
=
ε̇het,0(z)

ε̇hom

, with (24.5)

the standard deviation of matter fluctuations, section (21.4.3):

with σ(t) = σ8,0 ·
t

tH0

=
σ8,0

1 + z
(24.6)

Hereby, as heterogeneity is essential in the matter era or later,
we use Ωr,0 = 0 in a good approximation. Additionally, ξ ≈ 1.5
in Eq. (24.4), see THM (39).

(9c) Altogether, heterogeneity at a calendar date described by
a redshift z changes the rate H(z) of expansion according to
Eq. (24.3). Correspondingly, the factor H0(z) in the rate in
Eq. (24.3) can be observed with radiation emitted at z = zem.
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The three objects redshift z, rate H(z) and the factor H0(z) can
be observed and are elements of physical reality, DEF (15).
Observed and theoretical values H0(z) or H0(zem) are in precise
accordance, see Fig. (21.3), front cover and THM (39).
(10) Using the dynamics of volume in the late and in the early
universe, we derive and explain the era of ’cosmic inflation’,
see chapter (22). In this manner, we overcome the hypothetical
character and insufficient understanding of ’cosmic inflation’.
Moreover, we confirm that there was a rapid increase of dis-
tances in the early universe, Carmesin (2017, 2019b, 2021b).
(11) Using DV, we overcome the non - realistic (DEF 15, Hob-
son (2017), Isham (1995)) Copenhagen interpretation of QP by
deriving dynamical and nonlocal explanations of the essential
paradoxes in QP, C. (16) and section (18.3). In the Copenhagen
interpretation, the wave function Ψ is interpreted in an abstract
manner. The DV overcomes that abstract interpretation, as the
wave function Ψ is proportional to the rate ε̇L, which describes
the local and global formation of volume since the Big Bang.
Similarly, all postulates of QP achieve an interpretation in terms
of the volume, which is an element of physical reality, DEF (15).
(12) Using DV, we overcome the interpretation of the mea-
surement process by a so-called ’collapse’ of the wave function,
(Isham, 1995, p. 240): Before the measurement, there is a wave
function Ψbefore. It is a solution of the SEQ. At a measurement,
the operator Â corresponding to the measured observable trans-
forms the solution Ψbefore to the solution Ψafter = ÂΨbefore of
the SEQ. The change is achieved by the transient phenomenon
provided by the dynamics of the harmonic waves inherent to the
wave function Ψbefore. According to the DV, that transient phe-
nomenon has an unlimited phase velocity vp, see C. 16. Thus,
the transient phenomenon takes place at an unlimited velocity.
Altogether, based on the DV, the so-called ’collapse’ of the wave
function is overcome and replaced by a transformation of Ψ1.

1For instance, if a quantum object is emitted at the origin of a coordinate system, then
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(13) Using the derived energy conservation and the derivation
of the global dynamics on the basis of the local dynamics, we
solve the flatness problem, C. (5). Hereby, we also analyze
consequences of the energy density ρΛ. Thereby, we use the
cosmological principle of homogeneity. Note that within the
semiclassical theory of GR, homogeneity is founded by the fact
’that Ricci flow can not quickly turn an almost euclidean re-
gion into a very curved one, no matter what happens far away,’
(Perelman, 2002, p. 4). Altogether, we overcome the insuf-
ficient understanding of global and local dynamics, of energy
conservation and of the cosmological principle in the FLE.

(14) Using DV, we provide a mechanism that explains the gravi-
tational interaction, part (II), in a manner corresponding to the
graviton hypothesis, Blokhintsev and Galperin (1934).

(15) Using DV, we predict dimensional phase transitions of vol-
ume at critical densities ρ̃D,c, C. (22). Hereby, we derive the
values of these critical densities ρ̃D,c. These phase transitions
can in principle be observed and falsified, Popper (1974).

Moreover, these phase transitions provide the observed den-
sity of volume, C. (22). This finding provides additional evi-
dence for these predicted phase transitions.

24.2 Fulfilled criteria

Our theory fulfills the following criteria:

(1a) We derive the theory in an exact manner from funda-
mental principles of physics, C. (2). In particular, we do not
introduce any hypothesis or execute any fit. Our only numerical
input is as follows: the gravitational constant G, the velocity
of light c, the Planck constant h and the present-day time after
the Big Bang t0 ≈ 1/H0 (sections 25.3, 21.4.8, 21.4.9).

the wave function can be described by a spherical wave. When the object is measured
at a location with a position vector ~R, then the wave function transforms to a delta
distribution proportional to δ(~R).
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(1b) The present-day time t0 is a calendar date. In cosmology,
a calendar date can be expressed in terms of the redshift z. The
calendar date is no fit parameter: The calendar date of an event
can be measured with appropriate clocks.

For instance, the density of the volume ρvol does not depend
on the calendar date, see THM (37). In contrast, the observed
Hubble constant H0,obs depends on the calendar date zem of the
emission of the radiation used for the observation, see THM
(39) or Fig. (21.3).

If we use cosmological parameters, we derive these from fun-
damental principles, see Carmesin (2022e). Of course, we con-
firm our results with measured parameters, Riess et al. (2022),
Planck-Collaboration (2020). Accordingly, we use no hy-
pothesis and we execute no fit.

(2) Our theory can in principle be falsified, Popper (1974),
as we derive observable values. For instance, we derive a value
of the density of volume ρvol in C. (19, 22). Another example is
the Hubble parameter H0(zem) as a function of the redshift zem

of observed radiation in C. (21). An additional example is pro-
vided by the critical densities in C. (22). Further examples are
the cosmological parameters, Carmesin (2021a). More examples
are the coupling constants and charges in the electromagnetic
and electroweak interactions, Carmesin (2021e, 2022e).

(3) We show that the volume can be measured (section 2.6, C.
7). So the volume is an element of reality, DEF (15).

(4) Our derivations achieve precise accordance with ob-
servation, within the accuracy of measurement.

(5) We trace back quantum physics to geometry. For it,
we derive the dynamics of volume, including the tensor struc-
ture and dimensional phase transitions. Then we derive quan-
tum physics from the dynamics of volume. This result is similar
to the derivation of gravity from geometry in general relativity.

(6) We derive the observed type of nonlocality.

(7) We achieve causality combined with the observed
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type of nonlocality, as our derived nonlocality is in full accor-
dance with SR, since the nonlocal phenomenon does not trans-
port any energy or wave packet.
(8) We achieve the observed type of nonlocality without
violating the Einstein locality principle.

24.3 Relations among theories

Question: How is the theory of the dynamical volume related
to other theories? For an overview, see Fig. (12.3).

Gravity: Kepler (1619) discovered his third law of planetary
motion, based on observations by Brahe before 1601, see Brahe
and Kepler (1627). Galileo (1638) discovered the equivalence
principle, EP. Huygens (1673) discovered the law of the ra-
dial force of circular motion. Newton (1687) discovered the
universal law of gravitation, which can be derived within a sin-
gle page from the three above discoveries provided by Kepler
(1619), Galileo (1638) and Huygens (1673), see e. g. Carmesin
et al. (2023). Cavendish (1798) used a torsional balance pro-
posed by Michell many years before. With it, Cavendish mea-
sured the universal constant G of gravity. In his theory, Newton
(1687) proposed a flat space and a constant and homogeneous
rate of increase of time. Both proposals do not describe nature
correctly, as shown by tests of special relativity, SR, and by
general relativity, GR, see Einstein (1905, 1915), Will (2014).
Gauss (1809) provides a geometrical explanation of the 1/R2

law: At a distance R from a mass M , lines of the gravitational
interaction spread in a uniform manner in space, this implies
the 1/R2 law. Altogether, Newton (1687) discovered the uni-
versal law of gravitation. However, he proposed properties of
space and time that are too isolated from motion and gravity.
Gaussian gravity, GG, provides a geometrical explanation of
the 1/R2 law.

Electrodynamics: Coulomb (1785) used the torsional balance
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proposed by Michell in the field of gravity. With it, Coulomb
discovered the 1/R2 law of the electric force. Faraday (1852)
proposed the concept of magnetic fields. Maxwell (1865) used
these results, and he proposed a hypothetical aether. On that
basis, he developed the Maxwell equations of the dynamics of
electromagnetic fields. Thereby, the Maxwell equations explain
the universal propagation of electromagnetic waves at the uni-
versal velocity c. Furthermore, the dynamics of electromag-
netic fields is universal according to the principle of gauge in-
variance, see e. g. Noether (1918), Pauli (1941), Landau and
Lifschitz (1971), Carmesin (2021e, 2022e). Moreover, Einstein
(1905) used the Maxwell equations and their properties in order
to develop SR. However, SR implies that the proposed static
aether does not exist. Altogether, Maxwell (1865) discovered
the universal dynamics of electromagnetic fields, which provide
a bridge to SR, but the proposed aether is too static.

Relativity: Einstein (1905) made use of the universal Maxwell
equations and their properties in order to develop SR. Thereby,
Einstein realized that the combination of space and time to a
combined spacetime provides a coherent and simple explana-
tion of the dynamics in electromagnetic fields. For it, two con-
ditions are essential: [1] No object with nonzero energy should
move or propagate faster than light. [2] No aether should exist.

The EP and GG provide the Schwarzschild metric and the
curvature of spacetime, C. (3). Similarly, Einstein (1911a,
1915), Hilbert (1915) proposed general relativity, GR. Einstein
et al. (1935) realized that quantum physics, QP, (developed
since Planck (1899)), is nonlocal (it has processes faster than
light). In that context, Einstein (1948) proposed a principle
of locality, see [1], for unmediated, see [2], physical processes.
However, the DV shows that the considered unmediated physi-
cal processes are too isolated from existing DV.
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Dynamic volume, DV: The above three theories are success-
ful, as they are in accordance with fundamental principles of
physics: EP, GG, SR. However, each of the above theories has
an aspect that is either too isolated or too static. Accordingly,
the dynamics of volume should fulfill these principles: EP, GG,
SR. Thus, the DV is derived from EP, GG and SR. Altogether,
the DV implies and explains QP, including nonlocality. So, the
Copenhagen interpretation of QP is overcome (section 18.3).
Furthermore, the DV overcomes the shortcomings of the three
above theories: The dynamics of volume explain curved space-
time as well as QP. Electromagnetic waves propagate in DV,
not in a static aether. The geometrical and exactly derived DV
provides DEQs that explain curvature of spacetime, gravity,
nonlocality and a volume-based mediation of processes.

Dynamic volume provides a basis for path methods: In
present-day quantum field theory or theoretical physics, phys-
ical processes are often described by paths, Hilbert (1915) or
Schwartz (2014), Schulz (2020). However, at a double slit, a
quantum object does not use a path through one slit with a
probability, see the delayed choice experiment in C. (18). Thus,
a path is not observable, so it is not an element of physical re-
ality. However, dynamic volume can clarify the type of reality
that can be assigned to a path: A quantum object causes a rate
tn · ε̇L. It is proportional to a wave function Ψ ∝ tn · ε̇L (C. 14).
Each path x(τ) has a classical action S[x(τ)]. In a semiclassical
limit, the wave function has the form Ψ ∝ exp(i · S[x(τ)]/~),
(Landau and Lifschitz, 1965, Eq. 6.1). Thus, the rate has the
same form tn · ε̇L ∝ exp(i · S[x(τ)]/~). In general, a path is a
curved line in spacetime, at which the rate of propagating and
forming volume is analyzed.

In an ideal case, there is a path with the least action, with
the lowest oscillation, with the lowest cancellation and with the
highest amplitude. In the principle of least action, PLA, such
paths are selected. In principle, the rate-function tn · ε̇L ∝
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exp(i · S[x(τ)]/~) of a path can be measured with a sufficient
number of interference experiments. In this manner, the dy-
namics of volume assign an element of reality to a path and to
its rate-function in spacetime. Additionally, such paths may be
transformed to paths in Hilbert space.

In particular, the Einstein (1915) field equation, EFE, in
GR is usually derived from the Einstein-Hilbert action, Hilbert
(1915), Hobson et al. (2006). For it, the PLA is applied: A path
is chosen at which that action takes an extremal value. This
procedure shows that the EFE and the present-day GR are
semiclassical theories. Moreover, the DV provides a derivation
of the semiclassical GR, if the simplest reasonable action is used,
the Einstein-Hilbert action, and if the PLA is applied (C. 23).

Dynamic volume overcomes hypothetical character of
quantum postulates: The DV implies and explains the quan-
tum postulates. Accordingly, it is not necessary to propose
hypothetical quantum postulates, Hilbert et al. (1928), Neu-
mann (1932), Ballentine (1998), Kumar (2018). Instead, rules
of quantum physics are derived from the DV.

Further essential relations of DV: DV provides the process
underlying the elementary charge e and the electromagnetic in-
teraction as well as the couplings and charges underlying the
electroweak interaction, see Carmesin (2021e, 2022e). Thus the
DV provides the charge that remains unexplained by the uni-
versal theory of electrodynamics.

Moreover, Einstein (1919) and Einstein and Rosen (1935)
attempted to explain elementary particles on the basis of ge-
ometry or gravity of spacetime. However, these attempts have
not been successful. The DV is a geometrical theory providing
a wide range of results in a unifying manner: gravity, curva-
ture of spacetime, quantum physics as well as the formation
of elementary particles, see Carmesin (2021a, 2022c), and their
fundamental interactions, Carmesin (2021e, 2022e).
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Thus, the DV provides additional results underlying the elec-
trodynamics and the elementary particles.

On non-linearity of DV: The DEQ of GR, the EFE, is non-
linear. In contrast, the DEQ of DV is linear, see C. (11). How-
ever, the DEQ of DV includes the local formation of volume,
which changes the space in which the RGWs propagate. Thus,
the DEQ of DV describes a non-linear process.

On entanglement of DV: In general, the wave function can
describe conserved quantities such as the energy density. If
two objects fulfill a conservation law in a combined manner,
then they are not independent. Thus, they are entangled. So,
entanglement is an ubiquitous phenomenon.

On the measurement process: In nature, as well as in quan-
tum physics and in the more general DV, deterministic and
probabilistic phenomena are combined in a precisely determined
manner: The deterministic time evolution is represented by the
Schrödinger (1926a) equation. Probabilistic outcomes can occur
at the measurement process. Hereby, in general, rapid transient
phenomena take place so that conservation laws are fulfilled and
consequences of entanglement are fulfilled, see C. (16).

Ricci flow: Einstein (1915) proposed the Einstein field equa-
tion, EFE, in order to describe the dynamics of spacetime.

In the case without nonhomogeneity, the EFE describes the
time evolution of spacetime in terms of a flow, the Ricci flow,
Anderson (2004), Balmer (2021).

THM (35) shows that the dynamics of DV is more complex
than the dynamics of the Ricci flow or of the EFE, as a product
of tensors is inherent to the volume. That additional complexity
is essential for the unification of gravity, spacetime and quan-
tum physics, as poly-directional formation of volume is essential
in the expansion of space (C. 12). Unidirectional relative ad-
ditional volume can be transformed to the corresponding Ricci
flow, C. (17).
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Some improvements in the present book:

(1) In the present book, the unification of spacetime, gravity
and quanta is exact. For comparison, I used the FDA in the
derivation of the unification in Carmesin (2022d,f).

(2) In the present book, in the analysis of the H0 tension in
C. (21), I realized that the heterogeneity can be described in
terms of an equivalent density ρhet,equi (section 21.4.5). With
it, the density of volume ρvol and the equivalent density ρhet,equi

can be treated separately. In Carmesin (2022d,f), I analyzed
the density of volume ρvol and of the equivalent volume ρhet,equi

in a summarizing manner in a so-called ’vacuum’. In this book,
I isolate the dynamics and density of volume by the geometric
properties of volume. As a result, the heterogeneity does not
cause a time evolution of the density of volume ρvol.

Moreover, the separation of the equivalent density ρhet,equi

and the density of volume ρvol provides a more differentiated
analysis with help of a simultaneous change of H0 and tH0

,
solved via an exponent ξ (section 21.4.5). With it, the de-
rived density of volume ρvol is especially precise. A possible
consideration of the effect of a local negative overdensity of the
local universe is less precise. Moreover, it is not essential at the
considered redshift z = 0.055. Accordingly, it is neglected.

(3) In the homogeneous universe, the density ρΛ of the cosmo-
logical constant Λ is equal to the density of three-dimensional
volume ρvol, see sections (2.9, 25.2.4). In nature, that case oc-
curs at a good approximation in the early universe. For in-
stance, at the redshift zCMB = 1090.3 of the emission of the
cosmic microwave background, the universe has been very ho-
mogeneous, Smoot et al. (1992), Carmesin (2021d), C. (21).
For that case, our derived values of the density ρvol and of the
Hubble constant H0 are in precise accordance with observation.
However, in the heterogeneous universe, the density ρΛ is equal
to a function fΛ of the sum of the density of 3D volume ρvol
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and the equivalent density of heterogeneity ρhet,equi, Eq. (25.2),
C. (2, 21): ρΛ = fΛ(ρvol + ρhet,equi). We derive that function
fΛ(ρvol + ρhet,equi). With it, we derive, explain and solve the H0

tension, discovered by Riess et al. (2022) at the 5σ confidence
level. Thereby, we achieve precise accordance with observation
at a relative difference of theory and observation of 0.096 %, C.
(21). Hereby, we use no hypothesis and execute no fit.

In earlier publications, I did not always distinguish between
the densities ρvol and ρhet,equi. Accordingly, I often described the
density ρΛ of the ΛCDM model. In this context, I describe three
densities here: the density ρΛ of the ΛCDM model, the newly
evaluated density ρvol of the 3D volume in nature, and the new
equivalent density ρhet,equi of the heterogeneity in nature.

(4) In the present book, the analysis of the transient effect has
been elaborated, see C. (16).

(5) In the present book, the investigations of the flatness (C. 5),
of the LFV (C. 9), of the propagation and formation of volume
(C. 11), of the GFV (C. 12), of the ZPE (C. 14) and of the wave
packet (C. 14) are improved.

(6) In the present book, the following items are also elaborated:
the mapping theorem (C. 17), additional interpretations (C.
18), the process of formation of stable quanta (C. 13), the an-
alytic and comparative treatment of the time evolution of dark
energy during ’cosmic inflation’ (C. 22), the age of the uni-
verse is 13.3 · 109 years, instead of 13.8 · 109 years (THM 39).

Using the dynamics of volume, an element of physical reality,
we unify spacetime, gravity and quantum physics.
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Appendix

In this book, the results are derived successively from first prin-
ciples or fundamental principles of physics, see Fig. (12.3).

25.1 Mathematical methods

25.1.1 Analysis and Leibniz calculus

We apply the standard analysis, see e. g. Strang (2017).
Hereby, we use the Leibniz calculus providing differences ∆x
and differentials or increments dx, δx or δx, see e. g. Leib-
niz (1684). Moreover, we apply the Taylor (1715) expansion to
these differentials, and we denote a term of order n or larger in
dz by O(dzn), Flanders (1989).

25.1.2 Vectors and tensors

In this book, we use vectors and tensors, see e. g. Riemann
(1868) or also Landau and Lifschitz (1971), Carmesin (1996),
Lee (1997), Hobson et al. (2006), Straumann (2013).

25.1.3 Probability theory

In this book, we use probability theory, see e. g. Kolmogorov
(1956) or also Landau and Binder (2005) or Ash (2008) or Olof-
sson and Andersson (2012). Probability theory has a deep link

311
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to physics, especially to quantum physics.

In nature, in quantum physics and in the more general DV,
deterministic and probabilistic phenomena are combined in a
precisely determined manner, see chapters (16, 24). Accord-
ingly, probability theory is applied in a manner that fulfills the
laws of physics.

25.1.4 Geometry

The volume represents the substantial basis of geometry. Inci-
dence structures and relations among points, lines and planes
are provided by geometry, Hilbert (1903), Hart (1912). Curved
spaces are described by differential geometry, including tensors
Lee (1997) or Landau and Lifschitz (1971), Hobson et al. (2006).
Higher dimensional spaces are derived on the basis phase tran-
sitions providing a conservation of volume, Carmesin (2017,
2018b, 2019b, 2020b, 2021d), Carmesin and Schöneberg (2022).
Compound geometrical objects as well as polarization at phase
transitions are analyzed according to the minimization of en-
ergy, Carmesin (2021a,e, 2022e).

25.2 Methods of physics

25.2.1 Frames

In relativity, frames are used as a tool, see e. g. (Hobson et al.,
2006, section 1.1). Accordingly, we use frames as well1.

25.2.2 Probe mass and probe volume

In physics, probe masses are used as tools for experiments or
analysis, see e. g. Braginsky (2007). Accordingly, we use probe
masses and corresponding field generating masses.

1Note that frames are already essential in classical mechanics. For instance, if you ride
on your bicycle on a road, then the kinetic energy is zero in the frame of your bicycle. In
contrast, your kinetic energy is nonzero in the frame of the road.
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measured energy density uΛ =
dEΛ

dV

via measurement of metric or uΛ

volume dV energy dEΛ

measured properties of volume
are real quantities inherent to volume

Figure 25.1: In physics, a volume dV contains a measurable en-
ergy density uΛ = dEΛ

dV and the corresponding energy dEΛ.

Additionally, we use the concept of a probe volume, similarly
as in the theory of deformations, see e. g. (Sommerfeld, 1978,
Eqs. 18, 19, Fig. 1) or (Landau and Lifschitz, 1975, § 1).

25.2.3 Physical reality

In this section, we propose a founded sufficient condition for
physical reality, see e. g. Carmesin (2021d).

For it, we use a simple criterion proposed by (Einstein et al.,
1935, p. 777): ’The elements of physical reality cannot be
determined by a priori philosophical considerations, but must
be found by an appeal to results of experiments and measure-
ments.’ Accordingly, we use the following definition:

Definition 15 Physical reality

If a physical quantity can be measured, then that quantity rep-
resents a part of the physical reality.

25.2.4 Dynamic volume

Einstein (1917) proposed a cosmological constant Λ. Zeldovich
(1968) suggested a density of the cosmological constant ρΛ with
ΩΛ = ρΛ

ρcr.
= Λc2

3H2 (Eq. VII.2). Accordingly, ρΛ is the density
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that remains, if you subtract the density of matter ρm and the
density of radiation ρr from the whole density ρ (Hobson et al.,
2006, Eqs. 15.1, 15.5):

ρΛ := ρ0 − ρm,0 − ρr,0 =
3H2

0

8πG
or ΩΛ = 1− Ωm − Ωr (25.1)

The density ρΛ has also been named density of vacuum ρvac =
Λc2

8πG (Hobson et al., 2006, Eq. 8.22). However, very different
’densities of vacuum’ have been proposed: For instance, Agency
(2010) suggested a ’density of a quantum vacuum’ ρquantum vacuum

≈ 1096 kg
m3 . E. g. Zeldovich (1968) proposed another value of a

’density of a quantum vacuum’ of elementary particles, with
a estimate ρquantum vacuum, Zeldovich = 1020 kg

m3 [Eq. IX.1]. Ad-
ditionally, Zeldovich (1968) proposed a ’density of a classical
vacuum’ ρclassical vacuum, Zeldovich = 2 · 10−26 kg

m3 [Eq. VII.1]. For
instance, Zyla et al. (2020) used a ’vacuum expectation value’
vev = 246 GeV [section 11].

Perlmutter et al. (1998), Riess et al. (2000) and Smoot (2007)
observed a density ρ or energy density u = ρc2 of space. The
corresponding energy δE = u · δV has been named dark energy,
Huterer and Turner (1998). We mark it by the subscript DE.
The observed value is ρDE = uDE/c

2 ≈ 5 · 10−27 kg
m3 , see e. g.

Planck-Collaboration (2020). In the framework of the ΛCDM
model of cosmology, the density ρΛ could be determined from
the observed value H0, according to Eq. (2.65). However, the
observed values of H0 exhibit differences at the 5σ confidence
level, Riess et al. (2022). So, the following question arises: How
can the concept of dark energy be improved by funda-
mental of physics?

There is only one volume in nature, and it has only one density
of volume ρvol = Ωvol · ρcr.0.
(1) Volume is usually measured on the basis of the light travel
distance dLT , C. (2, 7, 17).



25.3. UNIVERSAL CONSTANTS 315

(2) The density of three-dimensional volume ρvol is determined
by the quanta of volume2 in C. (22, 20): Ωvol = 2/3.
(3) Heterogeneity causes an equivalent density ρhet,equi. Hereby,
ρΛ = fΛ(ρvol+equi) is the following function fΛ of the sum ρvol +
ρhet,equi = ρvol+equi: fΛ is derived by inserting Eqs. (21.53, 21.46)
and Ωr,0 ≈ 0 into Eq. (21.5), and by solving for ρΛ, whereby
H2(z) = 8πG(ρm(z) + ρΛ)/3 and ρΛ,hom,0 = ρvol:

H2(z)

ΩΛ,hom,0 + Ωm,0(1 + z)3
=

8πG

3
[ρm,hom,0 + ρvol+equi] or

ρm,hom,0 + ρvol+equi
ρcr.,0

(ρvol + ρm(z))− ρm(z) = fΛ(ρvol+equi)(25.2)

Using the approximations
ρm,hom,0+ρvol

ρcr.,0
≈ 1 and

ρequi
ρcr.,0
≈ ρequi(z),

we derive:

ρΛ = fΛ(ρvol + ρequi) ≈ ρvol + ρequi (25.3)

25.3 Universal constants

quantity observed value reference

G 6.674 08(31) · 10−11 m3

kg·s2 Zyla et al. (2020)

c 299 792 458 m
s , exact Zyla et al. (2020)

h 6.626 070 15 · 10−34 Js, exact Newell et al. (2018)

kB 1.380 649 · 10−23 J
K , exact Newell et al. (2018)

ε0 8.854 187 817 · 10−12 F
m Zyla et al. (2020)

Table 25.1: Universal constants, ((Newell et al., 2018, table 3),
(Zyla et al., 2020, tables 1.1, 2.1)).

2In principle, there could be the hen egg problem: In order to derive the DEQ of
dynamic volume, there must already be volume. However, this problem does not occur,
as our theory includes the time evolution of volume since the Big Bang, C. (5, 12, 22).
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25.4 Glossary on volume

increment: dri

changed increment: dr′i

complete vol.: dVL, e. g. 4πR2dL or dAz · dz′

reference vol.: dVR = limM→0 dVL

additional vol.: δV = dVL − dVR
formed vol.: δV = δV (τ + δτ)− δV (τ)

relative additional vol.: εL = δV
dVL

rate of locally formed vol., LFV: rateLFV = δV
δτ

normalized rate of LFV: ε̇L = rateLFV
dVL

rate of relative additional vol.: ∂τεL

rate of globally formed vol., GFV: V̇
V

volume - tensor: εij = ∂dri
∂dr′j

relative volume - tensor: εij,L =
εij
dVL

relative rate tensor: ε̇ij,L =
ε̇ij

dVL,dΩ

ukin - tensor: εij,L,sq = c2

8πG ·
∑

k εik,L · εkj,L
unidirectional additional vol.: δVj = δrj · dAj

Trace: either poly-directional relative additional vol.,
εV = Σ3

j=1
δVj
dVL

, or

isotropic relative additional vol.: εV = Σ3
j=1

δVj
dVL

(with
equal summands), also marked by εL,iso

present-day probe volume: dV0

The mapping theorem (35) provides relative addi-
tional volume and corresponding rates as functions
of the metric tensor. In particular, a unidirectional
rate is expressed as a function of the corresponding
Ricci flow.
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25.5 Natural units

Planck (1899) introduced natural units. We mark quantities in
natural units by a tilde. Natural units can be expressed by G, c
and ~. Even the electric field constant ε0, the elementary charge
e and qP are derived from SQ, G, c, ~ and via DV, Carmesin
(2021e, 2022e). kB relates statistics to physics.

physical entity Symbol Term in SI-Units

Planck length LP

√
~G
c3 1.616 · 10−35 m

Planck time tP
LP
c 5.391 · 10−44 s

Planck energy EP

√
~·c5
G 1.956 · 109 J

Planck mass MP

√
~·c
G 2.176 · 10−8 kg

Planck volume VD,P LDP

Planck volume, ball V̄D,P VD · LDP
Planck density ρP

c5

G2~ 5.155 · 1096 kg
m3

Planck density, ball ρ̄P
3c5

4πG2~ 1.2307 · 1096 kg
m3

Planck density, ball ρ̄D,P
MP

V̄D,P

Planck temperature TP TP = EP
kB

1.417 · 1032 K

scaled volume ṼD
VD
V̄D,P

scaled energy Ẽ E = Ẽ · EP

scaled density ρ̃D
M̃
r̃D= Ẽ

r̃D ρD = ρ̃D · ρ̄D,P
scaled length x̃ x = x̃ · LP
Planck charge qP MP

√
G4πε0 11,71 e

Table 25.3: Planck - units.
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25.6 Glossary

amplitude of matter fluctuations, σ8: The ampli-
tude of matter fluctuations describes the hetero-
geneity in the universe in a statistical manner, see
e. g. Kravtsov and Borgani (2012) or C. (21).

Big Bang: The Big Bang represents the start of time
evolution of visible space, see e. g. Karttunen
et al. (1996).

Big Crunch: A global gravitational instability could
in principle cause a global contraction, it is called
a Big Crunch, see e. g. Goodstein (1997).

’cosmic inflation’: Guth (1981) discovered a rapid
enlargement of distances in the early universe. For
it, he proposed an era of ’inflation’ or expansion.
However, the rapid enlargement was caused by di-
mensional phase transitions, by a cosmic unfold-
ing, Carmesin (2017, 2019b, 2022b) or C. (22).

CMB, Cosmic Microwave Background: The ra-
diation of the CMB has been emitted at z ≈ 1090,
see e. g. Penzias and Wilson (1965), Karttunen
et al. (1996), Planck-Collaboration (2020).

cosmological constant: Einstein (1917) proposed
a cosmological constant Λ. It corresponds to the
dark energy with its energy density uΛ = ρΛ · c2,
see dark energy in the glossary and C. (19).

curvature parameter: The curvature parameter k
describes the global curvature of space, see for in-
stance Karttunen et al. (1996), Carmesin (2019b),
Carmesin (2021d).

dark energy: Perlmutter Perlmutter et al. (1998),
Riess Riess et al. (2000) and Smoot Smoot (2007)
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discovered the accelerated expansion of the uni-
verse. Einstein (1917) explained such an acceler-
ated expansion with an additional constant, which
he named cosmological constant Λ. That constant
Λ can be transformed to an energy density uΛ

(Hobson et al., 2006, Eq. 8.22 or 15.4 with p. 389)
(C. 19, 20, 21, 22):

uΛ =
Λ · c4

8π ·G
(25.4)

density, critical: The critical density ρcr,t0 or ρcr de-
scribe the density of the universe corresponding to
the curvature parameter k = 0, see e. g. Kart-
tunen et al. (1996), Carmesin (2019b), Carmesin
(2021d).

density parameter: The ratio of a density ρj and
the critical density ρcr,t0 has been named density
parameter Ωj = ρj/ρcr,t0, see e. g. Karttunen et al.
(1996), Carmesin (2019b), Carmesin (2021d).

dynamic mass or relativistic mass: The concept
of the relativistic mass has been described by Tol-
man (1934), for instance. For it, the energy mass
relation of special relativity is used, E = M · c2, or
equivalently, M = E

c2 . In particular, if the object
propagates at v = c, then this relativistic mass can
be named dynamic mass, in order to remind that
the object has no rest mass.

dynamic volume, DV: Each portion of volume δV
has a dark energy δEΛ = δV · uΛ and an energy
density of volume uvol, C. (2). Correspondingly,
volume has a dynamics. If you want to emphasize
that dynamics, you may say dynamic volume, DV
(C. 2). But remind, there is only one volume. In
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earlier books, I did not always distinguish uvol and
uΛ. correspondingly, I used the name vacuum, C.
(2).

entanglement: If physical quantities or objects are
not separable, then the respective wave functions
cannot be factorized, and then these variables or
objects are called entangled. As a consequence,
the corresponding events are not statistically in-
dependent, C. (14).

EPR paradox: Einstein et al. (1935) realized that
QP is nonlocal. For it, they proposed the apparent
paradox, Bell (1964), Aspect et al. (1982), C. (16).

expansion of space: Hubble (1929) observed the ex-
pansion of the universe since the Big Bang, Kart-
tunen et al. (1996), Carmesin (2021a), C. (5, 12,
22).

frame: Each observation apparatus is localized in
spacetime. That localization establishes a frame,
Einstein (1905)3.

gravitational field: In an appropriate frame, the
gravitational fieldG∗ can be defined and measured,
see C. (2), THMs (15, 38), and e.g. Carmesin
(2021d)).

Hubble constant: When Hubble (1929) observed
the rate of expansion of space, it was called Hubble
constant H0, Karttunen et al. (1996).

Friedmann (1922) analyzed the rate of expansion of
space with a scaling factor R(t).

That rate is called Hubble parameter H(t) = Ṙ/R(t),
Karttunen et al. (1996). The value at the present-

3For instance, see also Einstein (1915), Landau and Lifschitz (1971), Hobson et al.
(2006).
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day time t0 is an improved concept of the Hub-
ble constant H(t0) = H0, Karttunen et al. (1996).
Moreover, the Hubble constant is an important
parameter in cosmological models, Hobson et al.
(2006), Carmesin (2019b). Thus it is measured by
various observers, achieve different results at the
5σ confidence level, Planck-Collaboration (2020),
Riess et al. (2022), Carmesin (2021d,a), C. (21).

metric tensor gij: A metric tensor describes dis-
tances in curved or flat spaces, Einstein (1915),
Schwarzschild (1916), Hobson et al. (2006), THM
(3).

nonlocality: Some quantum correlations become ef-
fective at velocity v ≤ c. Such quantum corre-
lations are called nonlocal, (Scheck, 2013, section
5.1.1), (Ballentine, 1998, C. 20), C. (16).

observable physical length: If there is a measure-
ment procedure for a physical length, then that
physical length is observable (C. 2).

physical reality: According to Einstein et al. (1935),
the elements of physical reality ’must be found by
an appeal to results of experiments and measure-
ments’, see section (25.2.3).

position factor: The position factor characterizes
the energy as a function of a position (C. 3).

principle of least or extremal action: In many
systems, the dynamics can be obtained by using
the principle of least or extremal action, Noether
(1918), Pauli (1941), Landau and Lifschitz (1971),
Carmesin (2022e).

principle in physics: A principle in physics is an es-
sential and broadly useful concept in physics, Pop-
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per (1974), Ruben (1990), Styrman (2019), Hilbert
(1915); Hilbert et al. (1928).

probe mass: A probe mass can be used in order to
analyze a motion or an interaction in physics (C.
25).

rate gravity four-vector, RGV: It is a four-vector
characterizing the RGW, see C. (9).

rate gravity scalar, RGS: It is a scalar character-
izing the RGW, see C. (9).

RGW, rate gravity wave: It is a wave characteriz-
ing the volume, see Carmesin (2021d).

rate of the formation of volume: It is a rate
characterizing the formation of volume, Carmesin
(2022d), part (II).

redshift and redchange: The redshift is a relative
increase of the wavelength of radiation z = ∆λ

λ ,
Karttunen et al. (1996), Carmesin (2021d). A rel-
ative increase of the wavelength of quanta of vol-
ume is called redchange, as the process of that in-
crease is very different from the processes yielding
redshift, C. (22).

Schwarzschild radius RS: At this radius, the escape
velocity is equal to c.

Schwarzschild metric, SM: (THM 3)

spacetime: Combination of space and time, Einstein
(1905), Carmesin (2021d).

successive derivation: In quantum physics, QP,
the results are derived successively from quantum
postulates, see e. g. Grawert (1977), Ballentine
(1998), Kumar (2018). In this book, the results
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are derived successively from the four basic prin-
ciples, the spacetime quadruple, SQ, see (C. 2).
Thus, the SQ implies the quantum postulates, and
these imply QP, Fig. (12.3).

uniform scaling: A uniform scaling is a transforma-
tion that enlarges or shrinks a vector ~v by a scale
factor k1→2, ~v

′ = k1→2~v (C. 5).

vacuum: The word vacuum is derived from the latin
adjective ’vacuus’, essentially meaning empty. In
physics, very different types of ’density of vacuum’
have been proposed, see sections (2.9, 24.3, 25.2.4).
The observed density of the cosmological constant
ρΛ = uΛ/c

2 has two components, the density of
three-dimensional volume ρvol and the equivalent
density of heterogeneity ρhet,equi, Eq. (2.67).

zero-point energy, ZPE: The energy of a ZPO is
called zero-point energy, Ballentine (1998), Saku-
rai and Napolitano (1994), C. (14).

zero-point oscillation, ZPO: A ZPO represents the
usual ground state in quantum physics. It can be
derived from the DV, C. (14).
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abbreviation meaning

C. chapter

COR corollary

DE dark energy

DEF definition

DEQ differential equation

DV dynamic volume

EP equivalence principle

GFV globally formed volume

GG generalized Gaussian gravity

GR general relativity

LFV locally formed volume

PLA principle of least action

PROP proposition

QP quantum physics

SEQ Schrödinger equation

SM Schwarzschild metric

SQ spacetime quadruple

SR special relativity

THM theorem

VD volume dynamics

Table 25.2: Abbreviations.
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GmbH, Leipzig - Mannheim, 20 edition.

Bucherer, A. H. (1908). Messungen an Becquerelstrahlen. Die
experimentelle Bestätigung der Lorentz-Einsteinschen Theo-
rie. Physikalische Zeitschrift, 9:755–762.

Cao, S., Ryan, J., and Ratra, B. (2021). Cosmological con-
straints from H II starburst galaxy, quasar angular size, and
other measurements. MNRAS, 000:1–13.

Carmesin, H.-O. (1995). Self-Organization of Pinwheels in the
Visual Cortex by Stochastic Hebb Dynamics: Equivalence to
Kosterlitz-Thouless Model. Acta Physica Slovaca, 45(2):93–
102.

Carmesin, H.-O. (1996). Grundideen der Relativitätstheorie.
Verlag Dr. Köster, Berlin.
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Berlin.

Carmesin, H.-O. (2022f). Unification of Spacetime, Gravity and
Quanta. In Carmesin, H.-O., editor, Universe: Unified from
Microcosm to Macrocosm - Volume 9, pages 1–258. Verlag Dr.
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Physik, 10:377–386.

Galileo, G. (1638). Dialogues concerning two new sciences
(translated). Elfevirii, Leida.

Gauss, C. F. (1809). Theoria motus corporum coelestium in
sectionibus conicis solem ambientium. Perthes und Besser,
Hamburg.



334 BIBLIOGRAPHY

Gauss, C. F. (1840). Recursion der Untersuchungen über die
Eigenschaften der positiven ternären quadratischen Formen
von Ludwig August Seeber. J. reine angew. Math., 20:312–
320.

Geers, T. L. and Sobel, L. H. (1971). Analysis of transient linear
wave propagation in shells by the finite difference method.
NASA, pages 1–186.

Goodstein, D. (1997). The Big Crunch. EOS, Transactions,
American Geophysical Union, 78:329–334.

Grawert, G. (1977). Quantenmechanik. Akademische Verlags-
gesellschaft, Wiesbaden.

Grebe-Ellis, J. (2011). Von der Optik im Tastraum zu einer
Optik des Sehens. Humboldt Universität Berlin.

Griffiths, D. (2008). Introduction to Elementary Particles.
Wiley-VCH, Weinheim, 2 edition.

Griffiths, D. J. (1994). Introduction to Quantum Mechanics.
Prentice Hall, Upper Saddle River.

Guth, A. H. (1981). Inflationary universe: A possible solution
to the horizon and flatness problems. Physical Review D,
23:347–356.

Hamilton, R. S. (1982). Three manifolds with positive ricci
curvature. Differential Geometry, 17:255–306.

Handsteiner, J. et al. (2017). Cosmic bell test: Measurement
settings from milky way stars. PRL, 118):1–6.

Hart, C. A. (1912). Plane and Solid Geometry. American Book
Company, New York - Cincinatti - Chicago.

Haude, S., Salehi, S., Vidal, S., Maturi, M., and Bartelmann,
M. (2022). Model-independent determination of the cosmic
growth factor. SciPost Astronomy, 2:1–22.



BIBLIOGRAPHY 335

Heeren, L., Sawitzki, P., and Carmesin, H.-O. (2020). Com-
prehensive Derivation of a Density Limit of the Evolution of
Space. PhyDid B, FU Berlin, pages 39–42.
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Schwarzschild, K. (1916). Über das Gravitationsfeld eines
Massenpunktes nach der Einstein’schen Theorie. Sitzungs-
berichte der Deutschen Akad. d. Wiss., pages 186–196.

Slipher, V. (1915). Spectrographic observations of nebulae. Re-
port of the American Astron. Soc., Meeteing 17:21–24.

Smoot, G. F. (2007). Nobel Lecture: Cosmic microwave back-
ground radiation anisotropies: Their discovery and utiliza-
tion. Review of Modern Physics, 79:1347–1379.

Smoot, G. F. et al. (1992). Structure in the COBE differential
microwave radiometer first-year maps. Astr. J., 396:L1–L5.

Sommerfeld, A. (1978). Mechanik der deformierbaren Medien.
Verlag Harri Deutsch, Frankfurt, 6. edition.

Stephani, H. (1980). Allgemeine Relativitätstheorie. VEB
Deutscher Verlag der Wissenschaften, Berlin, 2. edition.

Strang, G. (2017). Calculus. Wellesley-Cambridge Press,
Wellesley MA.

Straumann, N. (2013). General Relativity . Springer, Dordrecht
- Heidelberg - New York - London, 2. edition.



344 BIBLIOGRAPHY

Styrman, A. (2019). Economical Unification in Philosophy of
Science Before and After Ernst Mach. In Stadler, F., edi-
tor, Ernst Mach − Life, Work, Influence. Springer Nature,
Switzerland.

Taylor, B. (1715). Methodus Incrementorum. Typis Pearsonia-
nis prostant apud Gul. Innys ad Insignia Principis in Coeme-
terio Paulino, London.

Teschl, G. (2014). Mathematical Methods in Quantum Mechan-
ics. American Mathematical Society, Providence, 2. edition.

Tolman, R. C. (1934). Relativity, Thermodynamics and Cos-
mology. Clarendon Press, Oxford.

Tryon, Edward, P. (1973). Is the universe a vacuum fluctuation?
Nature, 246:396–397.

Vaidman, L. (2019). Quantum nonlocality. entropy, 21(447):1–
5.

Valcin, D. et al. (2021). Inferring the Age of the Universe with
Globular Clusters. JCAP, 08:017.

van der Waals, J. D. (1873). Over de Continuiteit van den gas-
en vloeistoftoestand. Sijthoff, Leiden.

Weinberg, S. (1996). The Quantum Theory of Fields. John
Wiley and Sons, New York - London - Sydney - Toronto.

Weinberg, S. (2017). The Trouble with Quantum Mechanics.
The New York Review of Books.

Wheeler, J. A. (1984). Law without law. In Quantum Theory
and Measurement, pages 182–213. Princeton University Press,
Princton.

White, S. D. M., Efstathiou, G., and Frenk, C. S. (1993).
The amplitude ofmass fluctuations in the Universe. MNRAS,
262:1023–1028.



BIBLIOGRAPHY 345

Will, C. M. (2014). The Confrontation between General Rel-
ativity and Experiment. Living Revies in Relativity, 17/4:1–
117.

Wirtz, C. (1922). Radialbewegung der Gasnebel. Astronomis-
che Nachrichten, 215:281–286.

Workman, R. L. et al. (2022). Review of Particle Physics (by
Particle Data Group). Progr. Theor. Exp. Phys., 083C01:1–
2270.

Zamorano, P. G. and Campos, F. A. U. (2007). On the Appli-
cation of the numerical Laplace transform for accurate elec-
tromagnetic transient analysis. Revista Mexicana de Fisica,
53(3):198–204.

Zeldovich, Y. B. (1968). The cosmological constant and the
theory of elementary particles. Sov. Astron. A. J., 11:381–
393.

Zilberberg, O. et al. (2018). Photonic topological pumping
through the edges of a dynamical four-dimensional quantum
Hall system. Nature, 553:59–63.

Zyla, P. A. et al. (2020). Review of Particle Physics (by Particle
Data Group). Progr. Theor. Exp. Phys., 083C01:1–2092.


