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Abstract: The human genotype represents at most ten billion binary informations, whereas
the human brain contains more than a million times a billion synapses. So a differentiated brain
structure is essentially due to self-organization. Such self-organization is relevant for areas rang-
ing from medicine to the design of intelligent complex systems. Many brain structures emerge as
collective phenomenon of a microscopic neurosynaptic dynamics: a stochastic dynamics mim-
ics the neuronal action potentials, while the synaptic dynamics is modeled by a local coupling
dynamics of type Hebb-rule, that is, a synaptic efficiency increases after coincident spiking of
pre- and postsynaptic neuron. The microscopic dynamics is transformed to a collective dy-
namics reminiscent of hydrodynamics. The theory models empirical findings quantitatively:
Topology preserving neuronal maps were assumed by Descartes in 1664; their self-organization
was suggested by Weiss in 1928; their empirical observation was reported by Marshall in 1941;
it is shown that they are neurosynaptically stable due to ubiquitous infinitesimal short range
electrical or chemical leakage. In the visual cortex, neuronal stimulus orientation preference
emerges; empirically measured orientation patterns are determined by the Poisson equation of
electrostatics; this Poisson equation orientation pattern emergence is derived here. Complex
cognitive abilities emerge when the basic local synaptic changes are regulated by valuation,
emergent valuation, attention, attention focus or combination of subnetworks. Altogether a
general theory is presented for the emergence of functionality from synaptic growth in neuro-
biological systems. The theory provides a transformation to a collective dynamics and is used
for quantitative modeling of empirical data.

1 Introduction

The human brain consists of roughly 10'? neurons. A typical neuron transmits along its axon
electric membrane potentials, most effectively by solitary wave like action potentials. The
neurons are connected at so-called synapses, each transmitting an arriving electric potential to
the neighboring neuron, with roughly 10000 synapses per neuron. So the brain establishes a
neuronal network, the performance and functionality of which depends crucially on the synaptic
connections. Hence the essential question is: Where do the synaptic connections come from?

While the biophysics of action potentials is understood quantitatively since Hodgkin and
Huxley [13], that of synaptic change is hardly understood quantitatively. However an essential
qualitative understanding is established by the so-called Hebb-rule [12, 16]: Synaptic change
is provided by local metabolic events and thus depends on pre- and postsynaptic activity; in
particular a synaptic efficiency increases after coincident pre- and postsynaptic activity. This
simple rule is extended here in the same spirit by the influence of membrane potentials of
neighboring neurons and analogously in [8] by slightly time delayed membrane potentials. This
extended rule is sufficient for the analysis of the emergence and stabilization of many global
synaptic structures, in quantitative agreement with experiment.



Figure 1: Signal processing ac-
cording to Descartes. Scheme
as indicated by Descartes in 1664.
An arrow is projected onto the
retina according to geometrical op-
tics. Then it is projected further
via axonic transmission to a corti-
cal map. Thereby neighborhood re-
lations are preserved.

2 Microscopic dynamics

For the present system of neurons and synapses, the microscopic dynamics is defined as the
dynamics of neuronal and synaptic states.

2.1 Neuronal dynamics

The axonal transmission of membrane potentials over distances exceeding one centimeter is
practically exclusively due to action potentials. Due to the dynamical nature of the latter, at
any instant of time a neuron does either initiate an action potential or not. Thus it is adequate
to model a neuron as a two state system

ni(t) = { 1 action potential initiated; "
l 0 otherwise.

For simplicity, we model discrete time steps ¢ = 0,1, 2,.... here; more detailed modeling of
the time structure of membrane potentials including action potentials is possible, but not very
relevant for the present investigation [8].

Next we characterize the stimulation h;(t) arriving at a neuron n; at a time step ¢. A
presynaptic neuron n;, coupled to the neuron n; via a synaptic efficiency alias coupling W;;
contributes an electrical potential W;;n;(t —1) in the membrane of n;; these potentials add up;
so the considered stimulation is

hi(t) =3 Wign;(t = 1). (2)

At this point we want to know, whether or not the postsynaptic neuron n; exhibits an action
potential alias spike as a consequence of a stimulation h;(¢). If we neglect thermodynamic
fluctuations, then the postsynaptic neuron n; spikes when its membrane potential exceeds a
threshold A;. The fraction of the membrane potential due to thermodynamic fluctuations is
roughly equal to the product of Boltzmann constant and physical temperature T}, divided
by the electrostatic energy of the stimulated membrane potential h; at the threshold [8]; at
310 Kelvin this fraction is typically one percent, so thermodynamic fluctuations are relevant
for spiking. Formally, we consider fluctuations with a formal temperature 7" and a Boltzmann-
type probability function for the neuronal state of the postsynaptic neuron [8]:

_exp (nl (t) 7hi(t%_)‘i)
P[nl(t)] o 1+ exp (hz‘(t;:)\i) )

In the following J; is not essential and set to zero.

(3)
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2.2 Coupling dynamics

A presynaptic neuron n; and a postsynaptic neuron n; are connected at the coupling Wj;.
Assuming that the coupling can increase by local metabolic events only, we express the coupling
change AW;;(t) := W;;(t) — Wi;(t — 1) as a function of the presynaptic state n;(t — 1) at the
previous time step and the postsynaptic state n;(t) at the current step, that is, AW;;(t) =
AW;j[ni(t),nj(t — 1)]. A power series expansion of this function yields four terms only, due
to the fact that n? = n;; thereby the only associative term is n;(t)n;(t — 1); because we are
interested in the emergence of connections due to correlated activity, we keep this term only as
an adequate approximation; thus we get the Hebb-type coupling change

AW (t) = ani(t)n;(t — 1), (4)

thereby a is the power series coefficient called learning rate in the following. Altogether Eqgs.
(1) to (4) establish the microscopic neurosynaptic dynamics.

3 Macroscopic dynamics

In many neurosynaptic systems, the number of neuronal events is very large (=~ 10! neurons,
each spiking every few milliseconds). So large overall changes may take place and the resulting
structure may exhibit a dynamical equilibrium state. Accordingly one may assume ergodicity
and thus exchange time averages and ensemble averages, for details see [3, 2, 8]. Hence one
may consider for each neurosynaptic state (W, ) the ensemble average ((AW,Aﬁ)H(W’ﬁ) of
all changes of couplings and neurons; this establishes a vector field in the formal space of
neurosynaptic states (for the case of two synaptic states only, such a vector field is presented
in Fig. (2)).

This averaging procedure is analogous to weather forecasting using the wind dynamics, usu-
ally called hydrodynamics: Microscopically, weather forecasting might be based on calculating
the trajectory according to Newton’s axioms for each molecule of the wind; such a procedure
is practically at best possible for few nanoseconds yielding quite a short forecasting period.
Macroscopically one may instead first derive the averaged change of molecule positions (this is
essentially the wind) and its dynamics from Newton’s axioms, thus one gets the wind dynamics
alias hydrodynamics as introduced first by Euler (see Fig. (3)).
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Formally the averaged dynamics may be expressed in terms of the conditioned probability
Plii(t + 1)|7(t), W (t), T] of postsynaptic states at a time step ¢ + 1 for provided neurosynaptic
states at the preceding time step ¢ and fixed formal temperature 7"

(A7, AT | iy = { (Z ) l:IIP[ni(t + 1))@, W, T) [#(t+ 1) — 71, AW (2))]. (5)

Thereby N is the number of neurons. Here and in the following we often omit the time index ¢
and express other time indices such as ¢+ 1; the above conditioned probabilities are determined
by Eq. (3) and the above coupling changes AW (¢) are determined by Eq. (4). The above
formula may be interpreted biophysically as follows: The events of subsequent pre- and postsy-
naptic neuronal spiking give rise to the coupling changes AW(t) and are characterized globally
and quantitatively by the conditioned probabilities P[n;(¢t+1)|i, W, T]: both are combined and
averaged by the sum Z%Zi(tJrl)} over all possible neuronal configurations. In a continuous time
limit one may express the above difference equation by a differential equation [2, 8].

Adiabatic limit. In most neuronal systems, the synaptic changes per time are relatively small
compared to the neuronal changes per time [16]. Accordingly one may analyze the dynamics
in the so-called adiabatic limit [11, 10]. In this limit, a representative number of presynaptic
neuronal states 7i(¢) occurs, before the couplings change significantly; so one may perform
the average over the presynaptic neuronal states in the above equation. For this purpose we
introduce the probability function P[7i(t)] for the neuronal states of the presynaptic neurons,
so we get

(AW | = ij[ﬁ]{ (z ) l:llp[ni(t +1)|7, W, T]AW (t). (6)

The above equation explicates the so-called [2, 8] synaptic change field or change field for short,
for an illustration see Fig. (2).

4 Retinotopy

Phenomenon of topology preservation. Many brain areas are organized as so-called corti-
cal maps, especially simple are cortical maps with each map neuron receiving input directly or
indirectly from a sensor neuron of an area of sensor neurons; examples are the retinotopic maps
(see Fig. (1)) with sensor neurons in the retina and somatosensory maps with sensor neurons
at the skin [16]. In these maps neighboring sensor neurons project to neighboring map neurons
(up to non-generic discontinuities), that is, the topology is preserved.

Local neurosynaptic self-organization of topology preservation. In order to model
the retinotopy emergence we introduce a prototypical 1D model (for a general dimension and
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topology see [2, 8, 9, 7, 5]) with N sensor neurons n;, N inner neurons 7; and couplings K;;
from sensor neurons to inner neurons; we do not consider boundary effects. We generalize
the coupling dynamics (see Eq. (4)) as follows. First we assume that neighboring presynap-
tic neurons contribute proportional to a presynaptic lateral contribution parameter o to the
membrane potential ¢;; of the coupling K;; (see Fig. (4)); analogously we assume that the
membrane potential is transferred to the postsynaptic neuron n; proportional to the coupling
K;; and to the neighbors of n; with a postsynaptic lateral contribution parameter 3 as addi-
tional proportionality factor. Second we assume that the coupling increase is proportional to
the current coupling (typical for biomass growth), to the learning parameter a and to the pre-
and postsynaptic signals, so we get

AKF? = 2akK[i; + B(Ripr + nic)][ng(f = 1) + a(ng_i (t = 1) +ny4(F = 1)]. (7)

Third we assume constant total coupling biomass at each neuron as follows
N N
> 2Ky =1’ =3 2Ky (8)
i=1 j=1

Altogether the topology preservation network architecture and neurosynaptic dynamics are
defined. Next we transform the couplings according to K;; = Wj/2 and accordingly AK;; =
W;jAW;;. The resulting change field is a scalar potential of a so-called change potential V' as
follows.

Potential theorem. For the above neurosynaptic dynamics (see Eqs. (1) to (8)) and in the
adiabatic limit, the mean coupling change (see Eq. (6)) is the gradient of a scalar potential as
follows:

(AW,) =~ )
with the change potential
al 2%

V= —oN g PlpuIn Z*, where the stimulation 7 is denoted by pu (10)

and the formal partition functions, one for each u,
2N

7= Y exp|-H"/T] (11)
{ni(t+1)}
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Accordingly, the stable emerging networks are the local minima of the scalar potential V.

For a proof see [2, 8,9, 7, 5]. The structure of the solution is a sum of formal partition functions
Z" as they are known from statistical physics. Nevertheless the system is by no means a system
of equilibrium statistics, because it is open due to the stimulation of sensor neurons. In the
rest of the paper, we consider random stimulation of sensor neurons with equal probability for
spiking and for not spiking.

Bijective mapping theorem. FEach coupling state that is locally stable with respect to the
neuronal fluctuations and with respect variations of the formal temperature T exhibits exactly
one nonzero coupling from each sensor neuron and exactly one nonzero coupling to each inner
neuron and thus establishes a one-to-one mapping from sensor to inner neurons.

This result is proven in [2, 8, 9, 7, 5] and may be easily understood as follows: Large couplings
grow most rapid (see Eq. (7)) and the total coupling weight at each neuron is constant (see Eq.
(8)); thus only one coupling remains at each neuron; hence a one-to-one mapping is established
globally.

Coincidence stabilization. So far we considered the emergence of a unique coupling at each
neuron. Next we consider the relations among emerging couplings. For this purpose we consider
an elementary key mechanism for the formation of related couplings, the stabilization of those
coupling states that provide additional coincident signal transfers (see Fig. (5)). To begin with,
one may express the change potential (see Fig. (10)) as a sum over single neuron potentials [8]
as follows

V= gjv with V; = —;—;‘C > In (1 + explh(t +1)/T7). (13)

By explicating the local stimulation h; (see Eq. (2)) and denoting by @ the number of presy-
naptic neurons that transfer signals to a postsynaptic neuron directly or indirectly (see Fig.
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(5)) we get [8]

T 2Q Q
V= —;—Q S In (1 +exp [%D with a, € {0,1,a, 8, a}. (14)
ng=0/1

Potential difference lemma. The single neuron change potential Vi in Eq. (14) with two
unequal neurons n, = ng and ny = n, is decreased by the potential difference

20@-2 oz /T _ oy /T __
N D In (1 + (e Die D > , (15)

—R/T =/T T oty +R)/T
nq=0/Ling#ng;ng#ny e BIT 4 e02/T 4 ey/T 4 elawtay+R)/

if the two neurons n, and n, are made identical. Hereby R represents terms due to the other
neurons; i.e. R =37, ., qgng.

A proof is presented in [8]. For positive factors a, and «, the potential difference AV} is
positive. Here these factors are positive (see Eq. (14)). So the network with n, = n, is more
stable than that with n, # ny (see Fig. (5)) due to a decrease of the change potential. For the
case of topology preservation (see Fig. (4)) the change potential is minimal, when the number
of identical presynaptic neurons n, = n,, (see Fig. (5)) is maximal; in the 1D model the number
() of neurons that transmit signals to a postsynaptic neuron is nine (see Figs. (4) and (6)); by
considering all possible arrangements of the nine couplings from these neurons one may easily
derive that the number of resulting identical presynaptic neurons n, = n, is obtained when the
topology is preserved [2, 8, 9, 7, 5]; so we get:

1D topology preservation theorem. For a globally stable coupling state that is also stable
with respect to temperature variations holds: The neighborhood is necessarily preserved if and
only if both lateral contribution parameters o and 3 are positive.

Discussion. Earlier modeling of such self-organization of topology preservation [22, 17, 23]
used some global mechanisms such as a so-called 'winner takes all mechanism’ (i. e. only the
map neuron with maximal stimulation spikes) or some lateral inhibition among distant map
neurons; here the dynamics is completely local at a neuron; this fact and the modeled dynamics
may be regarded as an adequate modeling of a third ontogenetic step of cortical maps; while in
the first step neurons migrate to target positions and in the second step axons grow roughly to
target areas, both according to chemical or other markers [16]. Moreover, these earlier models
do not exhibit a potential function, while the present change potential is embedded in the
theory of statistical physics and in a coherent theory of neuronal adaptation [2, 8].

The topology preservation stabilization is similar to Huygens pendulum clocks that are
hanging at the same wall and thus coupled slightly and exhibit a common phase after a while:
An infinitesimal coupling gives rise to global order. As a consequence, the ubiquitously observed
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topology preserving brain maps (see Fig. (1)) may be due to ubiquitously present electrical or
chemical leakages to neighbors, here modeled with o and (.

5 Orientation preference

Phenomenon of orientation preference. In mammals, the visual signals are transmitted
from the retina via the lateral geniculate nucleus (LGN) to the primary visual cortex, in par-
ticular to the areas 17 and 18 (Brodmann notation) [16]. In these areas there are neurons that
respond preferentially to a stimulation by edges with a particular orientation, as was discovered
by Hubel and Wiesel [14, 15].

Model for local random stimuli based neurosynaptic self-organization of orientation
preference. In order to model orientation preference emergence, we generalize the network
architecture of Fig. (4) to that specified in Fig. (7), moreover we model a square lattice
of neurons in each layer. In particular we introduce a retinal input layer with neurons 7;
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stimulated randomly. The retinal output neurons take values according to

np=ngta Yy g —n Y (16)

kEU(ﬁj) kEU’(ﬁj)

where v(n;) is the set of neighbors of n; while v/(n;) is the set of next nearest neighbors of
n;. The cortical neurons n; and n; are stimulated according to the couplings Kj;, B,,; and Ly,
indicated in Fig. (7) and spike according to the Boltzmann type probability specified in Eq.
(3). The couplings change according to a general local dynamics [8] as follows

AKU = QCLKi]‘TLj (t - 1) {ﬁz + Z Bmzﬁm} . (17)
mev(n;)

the couplings L;,, are set equal to B,,; (so the coincident stimulus transmission is realized) and
there are two couplings B,,; at a coupling K;; (see Fig. (7)) with

N N
> 2B,;=B” and Y 2B, =B’ (19)

Results. As a first result, one may derive a change potential for this system [8]; here we derive
the main result by investigating essential network architectures and by applying the above po-
tential difference lemma (see p. 4): The two neurons related by B,,; to a cortical input neuron
are shown in Fig. (8); due to the bijective mapping theorem there occur three correspond-
ing presynaptic neurons being neighbors according to the topology preservation theorem and
establishing either an orthogonal arrangement or a parallel arrangement. In the case of the
parallel arrangement, the postsynaptic neuron spikes preferentially when a bar directed along
the presynaptic arrangement is presented as stimulus, whereas no orientation preference occurs
in the orthogonal arrangement [2, 8].

Next we investigate the stability of the parallel and orthogonal arrangements. Stable ar-
rangements exhibit minimal change potential; for simplicity we consider relatively large OFF-
surround parameter n here. Then such minima occur at a minimum of identical presynaptic
next nearest neighbor neurons, because such identical neurons give rise to a negative potential
difference AV, equivalent to an effective repulsive interaction among the presynaptic neurons
transmitting signals to the same postsynaptic neuron directly or indirectly; this is due to the
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Figure 10: Pinwheel-order illustrated with vectors and orientations. Orientations, indicated
in the form of lines without arrows, explicated for the eight neurons in the immediate vicinity of
the topological singularities. Round arrows: Topological singularities of previous figure. Vectors:
Indicators for the polar angles ® that obey the Poisson equation. Additional lines without arrows:
Observed orientation preferences; these are constructed from the polar angle ¢ = ®/2; whereby the
angles ® obey the Poisson equation.

negative sign of n in Fig. (7), see potential difference lemma. Such a minimum of identi-
cal neurons transmitting signals to the same postsynaptic neuron is achieved by the parallel
arrangement, see Fig. (8). Thus the parallel arrangement is stabilized.

Discussion. The orientation preference of a cortical input neuron 7; is induced by the lengthy
arrangement of retinal neurons transmitting signals to n; directly or indirectly. Such a lengthy
alias parallel arrangement is stabilized by an effective repulsive force calculated with the po-
tential difference lemma and based on the OFF-surround activity of retinal neurons [2, 8]. The
cortical output layer is not yet needed here but will become essential in the next part about
orientation patterns. Some other models of orientation preference emergence did use lengthy
stimuli [19]; such stimulation is unreasonable because orientation preference emerges before
birth. Other models [20] do neither identify effective repulsive forces nor provide a soluble
model.

6 Orientation patterns

Discovery. Bonhoeffer and Grinvald observed area 18 in the cat’s brain with an electronic
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the cortical output layer. Essence: Random stimulation gives rise to additional signal coincidences in
the cortical output layer in the straight-line configuration only. This induces an effective force towards
the straight-line configuration, according to the potential difference lemma.

camera, using light with wavelength 600 nanometer [1]. At this wavelength, one observes
oxygenated, but no unoxygenated hemoglobin; therefrom one obtains a picture of the neu-
ronal activity. For eight orientations Bonhoeffer and Grinvald stimulated with bars of that
orientation, took the corresponding activity picture, determined for each area 18 location the
orientation of maximal neuronal activity and produced a map of these activities (see Fig. (10)).
This map exhibits regions of smoothly varying orientation preferences and singular points with
all orientation preferences in their neighborhood. At these singular points, the orientations
vary by the full amount of 7 in a regular clockwise or counter-clockwise manner (see Fig. (10)).

Neurosynaptic stabilization of pinwheels. We analyze further the network model intro-
duced above. As derived so far, each cortical output neuron is related to a cortical input neuron
related in turn to a parallel arrangement of retinal output neurons as indicated in Fig. (11).
In this figure, two neighboring cortical output neurons are investigated. Their corresponding
parallel arrangements in the retina exhibit either a T-shape or a straight-line arrangement.
Next we study the stability of these arrangements for the case in which the cortical coupling
parameter B (see Eq. (19)) is large compared to the retinal parameters o and 7. In this case
one may neglect the influence of the retinal neighbors (see Fig. (7)); so Fig. (11) contains all
neurons contributing significantly to the stabilization of T-shape or straight-line arrangements.
The stable arrangement exhibits the lower change potential. Thus it exhibits coincident signal
processing among the relevant neurons (see Fig. (11)). Hence the straight-line arrangement
is stable, because it provides coincident signal processing (see Fig. (11)). For a quantitative
analysis one may introduce a two neuron change potential V;; := V; + Vj, a change potential

VZJT of the T-shape arrangement and a change potential V;

\
J
the difference AV}, := V;g — Vg, an effective orientation potential. The latter may be calculated

according to the potential difference lemma and is AV;; < 0.

of the straight-line arrangement and

Generalization of the lattice model. So far we considered a square lattice of neurons in

11



each layer. Next we allow any neuron positions in each layer and note that the whole analysis
may be performed analogously and yields similar results due to the continuity inherent to the
present theory. Thus one gets in the generalized theory similar results for possible T-shape
arrangements and straight-line arrangements and one gets interpolating results for orientation
angle differences ¢; —¢; in between. This interpolation is performed adequately with a multipole
expansion yielding the quadrupolar term as leading order, due to the m-periodicity of orientation
preferences. So we get the orientation potential

Vii(@i — ;) = AVjjco8’(¢; — ¢;). (20)

Angle transformation. For the purpose of a later analysis, it is convenient to transform
the orientation angles ; into their twofold values ®; = 2¢;. These twofold angles ®; are the
polar angles of corresponding arrows as indicated in Fig. (10). The transformed orientation
interaction may be determined by transforming the cosine, so one gets

1 1
Vij(®i — @) = SAVijeos(®; — &) + AV (21)

N—_——
irrelevant constant

The constant in the above equation is irrelevant (because it does not give rise to a nonzero
derivative) and neglected in the following. The cosine is the scalar product of planar vectors o;
and v; indicated by the arrows in Fig. (10).

Total orientation interaction. Next we sum up all orientation interactions of the neighboring
orientations. So we get the formal orientation energy as follows.

1
H=3 3V (22)
(4,7)

Here the brackets below the sum indicate the summation over next nearest neighbors and the
factor 1/2 compensates the double summation of pairs. This formal energy is that of the
so-called x-y-model [18]. By definition, an x-y-model is a model of interacting dipoles.

Resulting orientation patterns. It has been shown for the above x-y-model formal energy
[18, 8] that the vector angles ®; obey the Poisson equation

0?P
2mp(7) = 55 (23)
(p = charge density) of electrostatics with the clockwise topological charges (see Fig. (10))
corresponding to positive electrical charges and with counter-clockwise topological charges cor-
responding to negative electrical charges, or vice versa. This establishes a quantitative equiva-
lence between planar electrostatic systems and orientation patterns [6, 8]; this is in quantitative
agreement with experimental findings.

In particular, the resulting patterns depend on a formal orientation temperature, that is
induced by the neuronal orientations via the Hebb-rule, for a quantitative analysis thereof
see [8]. At zero fluctuation rate T = 0 all orientations are parallel (see Fig. (12)); below a
critical fluctuation rate T, neutral pairs of topological charges emerge (see Fig. (12)); while the
topological charges are located randomly above T,. So far only randomly placed topological
charges have been observed, according to the present theory we predict a phase transition at
sufficiently low fluctuation rate (see Fig. (12)).
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Figure 13: The physical bases of the present neuronal adaptation theory. Left lower box:
Neuronal dynamics. Middle lower box: Coupling dynamics. Right lower box: Additional mechanisms
relevant for emerging structures. Two boxes of intermediate length: neurosynaptic dynamics. Upper
box: Resulting emergent synaptic structures. Arrows: Indication of consequences.
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Discussion. The present derivation of the orientation patterns is in quantitative agreement
with experiment and may be regarded as a success of this neurosynaptic theory, based on the
biologically plausible locality assumption for synaptic change and on the biophysically estab-
lished action potentials always influenced by thermodynamic membrane potential fluctuations
[8]. Other models of orientation patterns are not based on such simple and biologically plausible
model assumptions [24, 21| and do not provide such quantitative agreement with experiment,
analytical treatment and proof of equivalence to planar electrostatic systems as a result. A
particularly beautiful aspect of the present theory is that the Poisson equation may be derived
by purely topological considerations here, see f. i. [8], while in electrostatics the physical nature
of electrical charges must be assumed.

7 Outlook and discussion

Based on a stochastic neuronal dynamics modeling spikes and on a Hebb-type coupling increase
after coincident pre- and postsynaptic spiking extended by a slight influence of neighboring
neurons (see Fig. (13)), we showed the ubiquitous emergence of topology preservation, the
emergence of orientation preference and the emergence of orientation patterns with topological
charges equivalent to electrical charges. More generally, one may extend the local Hebb-type
dynamics further by investigating the influence of small slightly time delayed signals [8], of
valuation mechanisms, attention, attention focus and combining of sub-networks; as a result
one obtains emerging networks with increasing cognitive skills such as successful sensor-motor
performance, operant conditioning, generalization, transitive inference, learning of abstract
objects such as electrical charges, learning of counting without limitation as a possible solution
of Wittgenstein’s paradox (see Fig. (14)). Altogether I developed and investigated the present
neurosynaptic theory with the mentioned extensions in my habilitation thesis [2] and in more
detail and depth in my new book [8]; the investigation of such neurosynaptic systems may
be regarded as a research program, actually performable analytically and numerically with
many proven non-trivial quantitative agreements with experimental observations [4, 2, 8|, with
basic results in neurophysics, biology and cognitive sciences and with applications ranging from
medicine to intelligent systems technology. Acknowledgements. I am grateful for fruitful
discussions with Stefan Arndt, Hans Flohr, Olaf Scherf, Helmut Schwegler and Fred Wolf.
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