
Cortical Functionality Emergence:General Theory & Quantitative ResultsHans-Otto Carmesin, Institute for Theoretical Physics, University Bremen, 28334 Bre-men, Germany, Fax: 0421 218 4869, email: Carmesin@theo.physik.uni-bremen-de, WWW:http://schoner.physik.uni-bremen.de/~ carmesin/In: Frank Schweitzer (Ed.): Self-Organization of Complex Structures: From Individual toCollective Dynamics, vol. I, chapt. 18, 215-233, London: Gordon and Breach, 1996.Abstract: The human genotype represents at most ten billion binary informations, whereasthe human brain contains more than a million times a billion synapses. So a di�erentiated brainstructure is essentially due to self-organization. Such self-organization is relevant for areas rang-ing from medicine to the design of intelligent complex systems. Many brain structures emerge ascollective phenomenon of a microscopic neurosynaptic dynamics: a stochastic dynamics mim-ics the neuronal action potentials, while the synaptic dynamics is modeled by a local couplingdynamics of type Hebb-rule, that is, a synaptic e�ciency increases after coincident spiking ofpre- and postsynaptic neuron. The microscopic dynamics is transformed to a collective dy-namics reminiscent of hydrodynamics. The theory models empirical �ndings quantitatively:Topology preserving neuronal maps were assumed by Descartes in 1664; their self-organizationwas suggested by Weiss in 1928; their empirical observation was reported by Marshall in 1941;it is shown that they are neurosynaptically stable due to ubiquitous in�nitesimal short rangeelectrical or chemical leakage. In the visual cortex, neuronal stimulus orientation preferenceemerges; empirically measured orientation patterns are determined by the Poisson equation ofelectrostatics; this Poisson equation orientation pattern emergence is derived here. Complexcognitive abilities emerge when the basic local synaptic changes are regulated by valuation,emergent valuation, attention, attention focus or combination of subnetworks. Altogether ageneral theory is presented for the emergence of functionality from synaptic growth in neuro-biological systems. The theory provides a transformation to a collective dynamics and is usedfor quantitative modeling of empirical data.1 IntroductionThe human brain consists of roughly 1012 neurons. A typical neuron transmits along its axonelectric membrane potentials, most e�ectively by solitary wave like action potentials. Theneurons are connected at so-called synapses, each transmitting an arriving electric potential tothe neighboring neuron, with roughly 10000 synapses per neuron. So the brain establishes aneuronal network, the performance and functionality of which depends crucially on the synapticconnections. Hence the essential question is: Where do the synaptic connections come from?While the biophysics of action potentials is understood quantitatively since Hodgkin andHuxley [13], that of synaptic change is hardly understood quantitatively. However an essentialqualitative understanding is established by the so-called Hebb-rule [12, 16]: Synaptic changeis provided by local metabolic events and thus depends on pre- and postsynaptic activity; inparticular a synaptic e�ciency increases after coincident pre- and postsynaptic activity. Thissimple rule is extended here in the same spirit by the in
uence of membrane potentials ofneighboring neurons and analogously in [8] by slightly time delayed membrane potentials. Thisextended rule is su�cient for the analysis of the emergence and stabilization of many globalsynaptic structures, in quantitative agreement with experiment.1



Figure 1: Signal processing ac-cording to Descartes. Schemeas indicated by Descartes in 1664.An arrow is projected onto theretina according to geometrical op-tics. Then it is projected furthervia axonic transmission to a corti-cal map. Thereby neighborhood re-lations are preserved.2 Microscopic dynamicsFor the present system of neurons and synapses, the microscopic dynamics is de�ned as thedynamics of neuronal and synaptic states.2.1 Neuronal dynamicsThe axonal transmission of membrane potentials over distances exceeding one centimeter ispractically exclusively due to action potentials. Due to the dynamical nature of the latter, atany instant of time a neuron does either initiate an action potential or not. Thus it is adequateto model a neuron as a two state systemni(t) = � 1 action potential initiated;0 otherwise. (1)For simplicity, we model discrete time steps t = 0; 1; 2; :::: here; more detailed modeling ofthe time structure of membrane potentials including action potentials is possible, but not veryrelevant for the present investigation [8].Next we characterize the stimulation hi(t) arriving at a neuron ni at a time step t. Apresynaptic neuron nj, coupled to the neuron ni via a synaptic e�ciency alias coupling Wijcontributes an electrical potential Wijnj(t� 1) in the membrane of ni; these potentials add up;so the considered stimulation is hi(t) =Xj Wijnj(t� 1): (2)At this point we want to know, whether or not the postsynaptic neuron ni exhibits an actionpotential alias spike as a consequence of a stimulation hi(t). If we neglect thermodynamic
uctuations, then the postsynaptic neuron ni spikes when its membrane potential exceeds athreshold �i. The fraction of the membrane potential due to thermodynamic 
uctuations isroughly equal to the product of Boltzmann constant and physical temperature Tphys dividedby the electrostatic energy of the stimulated membrane potential hi at the threshold [8]; at310 Kelvin this fraction is typically one percent, so thermodynamic 
uctuations are relevantfor spiking. Formally, we consider 
uctuations with a formal temperature T and a Boltzmann-type probability function for the neuronal state of the postsynaptic neuron [8]:P [ni(t)] = exp �ni(t)hi(t)��iT �1 + exp �hi(t)��iT � : (3)In the following �i is not essential and set to zero.2
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Figure 2: Vector �eld. Ab-scissa: Coupling weightW21. Or-dinate: Coupling weight W22.For details see [2,8]. Vec-tor �eld: Averaged changes(h�W21i; h�W22i). Stationarystates = emerging networks =zeros of the vector �eld. Firstnetwork (I) at (W21;W22) �(1; 2). Second network (II) at(W21;W22) � (2; 1). Thirdnetwork (III) at (W21;W22) �(1:5; 1:5), not stable in contrastto (I) and (II).2.2 Coupling dynamicsA presynaptic neuron nj and a postsynaptic neuron ni are connected at the coupling Wij.Assuming that the coupling can increase by local metabolic events only, we express the couplingchange �Wij(t) := Wij(t) �Wij(t � 1) as a function of the presynaptic state nj(t � 1) at theprevious time step and the postsynaptic state ni(t) at the current step, that is, �Wij(t) =�Wij[ni(t); nj(t � 1)]. A power series expansion of this function yields four terms only, dueto the fact that n2i = ni; thereby the only associative term is ni(t)nj(t � 1); because we areinterested in the emergence of connections due to correlated activity, we keep this term only asan adequate approximation; thus we get the Hebb-type coupling change�WHebbij (t) = ani(t)nj(t� 1); (4)thereby a is the power series coe�cient called learning rate in the following. Altogether Eqs.(1) to (4) establish the microscopic neurosynaptic dynamics.3 Macroscopic dynamicsIn many neurosynaptic systems, the number of neuronal events is very large (� 1012 neurons,each spiking every few milliseconds). So large overall changes may take place and the resultingstructure may exhibit a dynamical equilibrium state. Accordingly one may assume ergodicityand thus exchange time averages and ensemble averages, for details see [3, 2, 8]. Hence onemay consider for each neurosynaptic state ( ~W;~n) the ensemble average h(� ~W;�~n)ij( ~W;~n) ofall changes of couplings and neurons; this establishes a vector �eld in the formal space ofneurosynaptic states (for the case of two synaptic states only, such a vector �eld is presentedin Fig. (2)).This averaging procedure is analogous to weather forecasting using the wind dynamics, usu-ally called hydrodynamics: Microscopically, weather forecasting might be based on calculatingthe trajectory according to Newton's axioms for each molecule of the wind; such a procedureis practically at best possible for few nanoseconds yielding quite a short forecasting period.Macroscopically one may instead �rst derive the averaged change of molecule positions (this isessentially the wind) and its dynamics from Newton's axioms, thus one gets the wind dynamicsalias hydrodynamics as introduced �rst by Euler (see Fig. (3)).3



Forecast of Weather Neuronal AdaptationMicro-dynamics Molecular motion Single synapse change(Newton 1686)Computable Nanosecond � HoursAveraging #(Euler 1760) #Di�. eq. for Wind (Synaptic) change �eldComputable Days Mathematical solutionsNovel phenomena Wing Topological charges
Figure 3: Com-parable Field Theo-ries. Both �eld theo-ries are obtained by av-eraging the microscopicdynamics and yield pre-dictability and novelphenomena.Formally the averaged dynamics may be expressed in terms of the conditioned probabilityP [~n(t+ 1)j~n(t); ~W (t); T ] of postsynaptic states at a time step t+ 1 for provided neurosynapticstates at the preceding time step t and �xed formal temperature T :h(�~n;� ~W )ij( ~W;~n) = 2NXfni(t+1)g NYi=1P [ni(t + 1)j~n; ~W; T ] [~n(t+ 1)� ~n;� ~W (t)]: (5)Thereby N is the number of neurons. Here and in the following we often omit the time index tand express other time indices such as t+1; the above conditioned probabilities are determinedby Eq. (3) and the above coupling changes � ~W (t) are determined by Eq. (4). The aboveformula may be interpreted biophysically as follows: The events of subsequent pre- and postsy-naptic neuronal spiking give rise to the coupling changes � ~W (t) and are characterized globallyand quantitatively by the conditioned probabilities P [ni(t+1)j~n; ~W; T ]; both are combined andaveraged by the sum P2Nfni(t+1)g over all possible neuronal con�gurations. In a continuous timelimit one may express the above di�erence equation by a di�erential equation [2, 8].Adiabatic limit. In most neuronal systems, the synaptic changes per time are relatively smallcompared to the neuronal changes per time [16]. Accordingly one may analyze the dynamicsin the so-called adiabatic limit [11, 10]. In this limit, a representative number of presynapticneuronal states ~n(t) occurs, before the couplings change signi�cantly; so one may performthe average over the presynaptic neuronal states in the above equation. For this purpose weintroduce the probability function P [~n(t)] for the neuronal states of the presynaptic neurons,so we get h� ~W ij ~W = 2NX~n P [~n] 2NXfni(t+1)g NYi=1P [ni(t+ 1)j~n; ~W; T ]� ~W (t): (6)The above equation explicates the so-called [2, 8] synaptic change �eld or change �eld for short,for an illustration see Fig. (2).4 RetinotopyPhenomenon of topology preservation. Many brain areas are organized as so-called corti-cal maps, especially simple are cortical maps with each map neuron receiving input directly orindirectly from a sensor neuron of an area of sensor neurons; examples are the retinotopic maps(see Fig. (1)) with sensor neurons in the retina and somatosensory maps with sensor neuronsat the skin [16]. In these maps neighboring sensor neurons project to neighboring map neurons(up to non-generic discontinuities), that is, the topology is preserved.Local neurosynaptic self-organization of topology preservation. In order to modelthe retinotopy emergence we introduce a prototypical 1D model (for a general dimension and4
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Figure 4: Networkarchitecture. Illus-tration for the specialcase of the one dimen-sional model. nj: In-put neuron. ~ni: Cor-tical map neuron. �ij:Axonic membrane po-tential. �: Presynapticlateral contribution pa-rameter. �: Postsynap-tic lateral contributionparameter. Kij: Cou-pling.topology see [2, 8, 9, 7, 5]) with N sensor neurons nj, N inner neurons ~ni and couplings Kijfrom sensor neurons to inner neurons; we do not consider boundary e�ects. We generalizethe coupling dynamics (see Eq. (4)) as follows. First we assume that neighboring presynap-tic neurons contribute proportional to a presynaptic lateral contribution parameter � to themembrane potential �ij of the coupling Kij (see Fig. (4)); analogously we assume that themembrane potential is transferred to the postsynaptic neuron ~ni proportional to the couplingKij and to the neighbors of ~ni with a postsynaptic lateral contribution parameter � as addi-tional proportionality factor. Second we assume that the coupling increase is proportional tothe current coupling (typical for biomass growth), to the learning parameter a and to the pre-and postsynaptic signals, so we get�KHebbij = 2aKij[~ni + �(~ni+1 + ~ni�1)][nj(t� 1) + �(nj�1(t� 1) + nj+1(t� 1))]: (7)Third we assume constant total coupling biomass at each neuron as followsNXi=1 2Kij = r2 = NXj=1 2Kij: (8)Altogether the topology preservation network architecture and neurosynaptic dynamics arede�ned. Next we transform the couplings according to Kij = W 2ij=2 and accordingly �Kij =Wij�Wij. The resulting change �eld is a scalar potential of a so-called change potential V asfollows.Potential theorem. For the above neurosynaptic dynamics (see Eqs. (1) to (8)) and in theadiabatic limit, the mean coupling change (see Eq. (6)) is the gradient of a scalar potential asfollows: h�Wiji = � @V@Wij (9)with the change potentialV = �aT2N 2NX� P [�] lnZ�; where the stimulation ~n is denoted by � (10)and the formal partition functions, one for each �,Z� = 2NXf~ni(t+1)g exp[�H�=T ] (11)5
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l V Figure 5: Changepotential di�erence.Abscissa: Couplingspace schematically.Ordinate: Changepotential V . Left:Local change potentialminimum withoutcoincidence of signalsalong thick lines. Right:Change potential mini-mum due to coincidenceas indicated by thicklines.and with the formal energy functionsH� = NXi h�i (t+ 1)~ni(t + 1); where h�i (t+ 1) = NXj Kijnjj�: (12)Accordingly, the stable emerging networks are the local minima of the scalar potential V .For a proof see [2, 8, 9, 7, 5]. The structure of the solution is a sum of formal partition functionsZ� as they are known from statistical physics. Nevertheless the system is by no means a systemof equilibrium statistics, because it is open due to the stimulation of sensor neurons. In therest of the paper, we consider random stimulation of sensor neurons with equal probability forspiking and for not spiking.Bijective mapping theorem. Each coupling state that is locally stable with respect to theneuronal 
uctuations and with respect variations of the formal temperature T exhibits exactlyone nonzero coupling from each sensor neuron and exactly one nonzero coupling to each innerneuron and thus establishes a one-to-one mapping from sensor to inner neurons.This result is proven in [2, 8, 9, 7, 5] and may be easily understood as follows: Large couplingsgrow most rapid (see Eq. (7)) and the total coupling weight at each neuron is constant (see Eq.(8)); thus only one coupling remains at each neuron; hence a one-to-one mapping is establishedglobally.Coincidence stabilization. So far we considered the emergence of a unique coupling at eachneuron. Next we consider the relations among emerging couplings. For this purpose we consideran elementary key mechanism for the formation of related couplings, the stabilization of thosecoupling states that provide additional coincident signal transfers (see Fig. (5)). To begin with,one may express the change potential (see Fig. (10)) as a sum over single neuron potentials [8]as follows V = NXi Vi with Vi = �aT2N X� ln �1 + exp[~hi(t + 1)=T ]�: (13)By explicating the local stimulation hi (see Eq. (2)) and denoting by Q the number of presy-naptic neurons that transfer signals to a postsynaptic neuron directly or indirectly (see Fig.6
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cbacbcbaba Figure 6: Topologypreservation in the 1D-network. LEFT: Unrelatedpresynaptic neurons. RIGHT:Presynaptic neurons with fourneuron identities as indicatedminimize the change potentialand provide topology preser-vation.(5)) we get [8]Vi = �aT2Q 2QXnq=0=1 ln 1 + exp "PQq �qnqT #! with �q 2 f0; 1; �; �; ��g: (14)Potential di�erence lemma. The single neuron change potential Vi in Eq. (14) with twounequal neurons nq = nx and nq = ny is decreased by the potential di�erence�Vi = aT2Q 2Q�2Xnq=0=1;nq 6=nx;nq 6=ny ln 1 + (e�x=T � 1)(e�y=T � 1)e�R=T + e�x=T + e�y=T + e(�x+�y+R)=T ! ; (15)if the two neurons nx and ny are made identical. Hereby R represents terms due to the otherneurons; i.e. R = Px6=q 6=y �qnq.A proof is presented in [8]. For positive factors �x and �y, the potential di�erence �Vi ispositive. Here these factors are positive (see Eq. (14)). So the network with nx = ny is morestable than that with nx 6= ny (see Fig. (5)) due to a decrease of the change potential. For thecase of topology preservation (see Fig. (4)) the change potential is minimal, when the numberof identical presynaptic neurons nx = ny (see Fig. (5)) is maximal; in the 1D model the numberQ of neurons that transmit signals to a postsynaptic neuron is nine (see Figs. (4) and (6)); byconsidering all possible arrangements of the nine couplings from these neurons one may easilyderive that the number of resulting identical presynaptic neurons nx = ny is obtained when thetopology is preserved [2, 8, 9, 7, 5]; so we get:1D topology preservation theorem. For a globally stable coupling state that is also stablewith respect to temperature variations holds: The neighborhood is necessarily preserved if andonly if both lateral contribution parameters � and � are positive.Discussion. Earlier modeling of such self-organization of topology preservation [22, 17, 23]used some global mechanisms such as a so-called 'winner takes all mechanism' (i. e. only themap neuron with maximal stimulation spikes) or some lateral inhibition among distant mapneurons; here the dynamics is completely local at a neuron; this fact and the modeled dynamicsmay be regarded as an adequate modeling of a third ontogenetic step of cortical maps; while inthe �rst step neurons migrate to target positions and in the second step axons grow roughly totarget areas, both according to chemical or other markers [16]. Moreover, these earlier modelsdo not exhibit a potential function, while the present change potential is embedded in thetheory of statistical physics and in a coherent theory of neuronal adaptation [2, 8].The topology preservation stabilization is similar to Huygens pendulum clocks that arehanging at the same wall and thus coupled slightly and exhibit a common phase after a while:An in�nitesimal coupling gives rise to global order. As a consequence, the ubiquitously observed7
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Figure 7: Net-work architecture.Monocular model.TOP: Full networkarchitecture for the1D case. BOT-TOM: All signalpathways arrivingat ~ni are explicated:nj: Input neuron.~ni: Cortical mapneuron. �ij: Axonicmembrane poten-tial; explicitly �ij =n̂j+�(n̂j�1+n̂j+1)��(n̂j�2 + n̂j+2). �:Presynaptic lat-eral contributionparameter for ON-center stimulation.�: Presynapticlateral contribu-tion parameterfor OFF-surroundstimulation. Kij:Coupling. Bmiand Lim: Furthercouplings. For1D-architecture:m = i � 1 andk = i + 1. � isneglected since itis regarded smallcompared to Bki.topology preserving brain maps (see Fig. (1)) may be due to ubiquitously present electrical orchemical leakages to neighbors, here modeled with � and �.5 Orientation preferencePhenomenon of orientation preference. In mammals, the visual signals are transmittedfrom the retina via the lateral geniculate nucleus (LGN) to the primary visual cortex, in par-ticular to the areas 17 and 18 (Brodmann notation) [16]. In these areas there are neurons thatrespond preferentially to a stimulation by edges with a particular orientation, as was discoveredby Hubel and Wiesel [14, 15].Model for local random stimuli based neurosynaptic self-organization of orientationpreference. In order to model orientation preference emergence, we generalize the networkarchitecture of Fig. (4) to that speci�ed in Fig. (7), moreover we model a square latticeof neurons in each layer. In particular we introduce a retinal input layer with neurons n̂j8
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Figure 8: Orthogonal versusparallel presynaptic arrangement.Top: Retina. Bottom: Cortex. Lowercircle: Considered cortical neuron. Up-per circle: Corresponding presynapticretinal neuron. Lower �;r: Corticalneighbor neurons. Upper �;r: Corre-sponding presynaptic neurons. Upperr: Occurs either in the same directionas � or in an orthogonal direction.stimulated randomly. The retinal output neurons take values according tonj = n̂j + � Xk2�(n̂j) n̂k � � Xk2�0(n̂j) n̂k; (16)where �(n̂j) is the set of neighbors of n̂j while � 0(n̂j) is the set of next nearest neighbors ofn̂j. The cortical neurons �ni and ~ni are stimulated according to the couplings Kij; Bmi and Limindicated in Fig. (7) and spike according to the Boltzmann type probability speci�ed in Eq.(3). The couplings change according to a general local dynamics [8] as follows�Kij = 2aKijnj(t� 1)h�ni + Xm2�(�ni)Bmi�nmi: (17)�Bmi = 2aBmiKijnj(t� 1)�nm; (18)the couplings Lim are set equal to Bmi (so the coincident stimulus transmission is realized) andthere are two couplings Bmi at a coupling Kij (see Fig. (7)) withNXi 2Bmi = B2 and NXm 2Bmi = B2: (19)Results. As a �rst result, one may derive a change potential for this system [8]; here we derivethe main result by investigating essential network architectures and by applying the above po-tential di�erence lemma (see p. 4): The two neurons related by Bmi to a cortical input neuronare shown in Fig. (8); due to the bijective mapping theorem there occur three correspond-ing presynaptic neurons being neighbors according to the topology preservation theorem andestablishing either an orthogonal arrangement or a parallel arrangement. In the case of theparallel arrangement, the postsynaptic neuron spikes preferentially when a bar directed alongthe presynaptic arrangement is presented as stimulus, whereas no orientation preference occursin the orthogonal arrangement [2, 8].Next we investigate the stability of the parallel and orthogonal arrangements. Stable ar-rangements exhibit minimal change potential; for simplicity we consider relatively large OFF-surround parameter � here. Then such minima occur at a minimum of identical presynapticnext nearest neighbor neurons, because such identical neurons give rise to a negative potentialdi�erence �Vi equivalent to an e�ective repulsive interaction among the presynaptic neuronstransmitting signals to the same postsynaptic neuron directly or indirectly; this is due to the9
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Figure 9: Orthogonal and parallel presynaptic neighbor arrangements. Retinal arrange-ment of presynaptic neurons and their next nearest neighbors. Presynaptic neurons as in the above�gure. Next nearest neighbors analogous to neighbors in the above �gure. Essence: E�ective repul-sive interaction in the orthogonal arrangement due to coincidence of presynaptic with next nearestneighbor neurons; but e�ective attractive interaction in the parallel arrangement due to coincidenceof next nearest neighbor neurons.
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0 0Figure 10: Pinwheel-order illustrated with vectors and orientations. Orientations, indicatedin the form of lines without arrows, explicated for the eight neurons in the immediate vicinity ofthe topological singularities. Round arrows: Topological singularities of previous �gure. Vectors:Indicators for the polar angles � that obey the Poisson equation. Additional lines without arrows:Observed orientation preferences; these are constructed from the polar angle ' = �=2; whereby theangles � obey the Poisson equation.negative sign of � in Fig. (7), see potential di�erence lemma. Such a minimum of identi-cal neurons transmitting signals to the same postsynaptic neuron is achieved by the parallelarrangement, see Fig. (8). Thus the parallel arrangement is stabilized.Discussion. The orientation preference of a cortical input neuron �ni is induced by the lengthyarrangement of retinal neurons transmitting signals to �ni directly or indirectly. Such a lengthyalias parallel arrangement is stabilized by an e�ective repulsive force calculated with the po-tential di�erence lemma and based on the OFF-surround activity of retinal neurons [2, 8]. Thecortical output layer is not yet needed here but will become essential in the next part aboutorientation patterns. Some other models of orientation preference emergence did use lengthystimuli [19]; such stimulation is unreasonable because orientation preference emerges beforebirth. Other models [20] do neither identify e�ective repulsive forces nor provide a solublemodel.6 Orientation patternsDiscovery. Bonhoe�er and Grinvald observed area 18 in the cat's brain with an electronic10
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Figure 11: T-shape versus straight-line. Three layers occurring in two connectivity arrange-ments: T-shape versus orthogonal. Full circles: Two considered cortical neurons with their presynapticneurons. Big circle: Emphasized retinal neuron. Arrows: Emphasized signal transfers in the two ar-rangements from the big circle via the same neuron in the cortical input layer to the same neuron inthe cortical output layer. Essence: Random stimulation gives rise to additional signal coincidences inthe cortical output layer in the straight-line con�guration only. This induces an e�ective force towardsthe straight-line con�guration, according to the potential di�erence lemma.camera, using light with wavelength 600 nanometer [1]. At this wavelength, one observesoxygenated, but no unoxygenated hemoglobin; therefrom one obtains a picture of the neu-ronal activity. For eight orientations Bonhoe�er and Grinvald stimulated with bars of thatorientation, took the corresponding activity picture, determined for each area 18 location theorientation of maximal neuronal activity and produced a map of these activities (see Fig. (10)).This map exhibits regions of smoothly varying orientation preferences and singular points withall orientation preferences in their neighborhood. At these singular points, the orientationsvary by the full amount of � in a regular clockwise or counter-clockwise manner (see Fig. (10)).Neurosynaptic stabilization of pinwheels. We analyze further the network model intro-duced above. As derived so far, each cortical output neuron is related to a cortical input neuronrelated in turn to a parallel arrangement of retinal output neurons as indicated in Fig. (11).In this �gure, two neighboring cortical output neurons are investigated. Their correspondingparallel arrangements in the retina exhibit either a T-shape or a straight-line arrangement.Next we study the stability of these arrangements for the case in which the cortical couplingparameter B (see Eq. (19)) is large compared to the retinal parameters � and �. In this caseone may neglect the in
uence of the retinal neighbors (see Fig. (7)); so Fig. (11) contains allneurons contributing signi�cantly to the stabilization of T-shape or straight-line arrangements.The stable arrangement exhibits the lower change potential. Thus it exhibits coincident signalprocessing among the relevant neurons (see Fig. (11)). Hence the straight-line arrangementis stable, because it provides coincident signal processing (see Fig. (11)). For a quantitativeanalysis one may introduce a two neuron change potential Vij := Vi + Vj; a change potentialV Tij of the T-shape arrangement and a change potential V jij of the straight-line arrangement andthe di�erence �Vij := V jij�V Tij , an e�ective orientation potential. The latter may be calculatedaccording to the potential di�erence lemma and is �Vij < 0.Generalization of the lattice model. So far we considered a square lattice of neurons in11



each layer. Next we allow any neuron positions in each layer and note that the whole analysismay be performed analogously and yields similar results due to the continuity inherent to thepresent theory. Thus one gets in the generalized theory similar results for possible T-shapearrangements and straight-line arrangements and one gets interpolating results for orientationangle di�erences �i��j in between. This interpolation is performed adequately with a multipoleexpansion yielding the quadrupolar term as leading order, due to the �-periodicity of orientationpreferences. So we get the orientation potentialVij('i � 'j) = �Vij cos2('i � 'j): (20)Angle transformation. For the purpose of a later analysis, it is convenient to transformthe orientation angles 'i into their twofold values �i = 2'i: These twofold angles �i are thepolar angles of corresponding arrows as indicated in Fig. (10). The transformed orientationinteraction may be determined by transforming the cosine, so one getsVij(�i � �j) = 12�Vij cos(�i � �j) + 12�Vij:| {z }irrelevant constant (21)The constant in the above equation is irrelevant (because it does not give rise to a nonzeroderivative) and neglected in the following. The cosine is the scalar product of planar vectors ~viand ~vj indicated by the arrows in Fig. (10).Total orientation interaction. Next we sum up all orientation interactions of the neighboringorientations. So we get the formal orientation energy as follows.H = 12 Xhi;jiVij: (22)Here the brackets below the sum indicate the summation over next nearest neighbors and thefactor 1/2 compensates the double summation of pairs. This formal energy is that of theso-called x-y-model [18]. By de�nition, an x-y-model is a model of interacting dipoles.Resulting orientation patterns. It has been shown for the above x-y-model formal energy[18, 8] that the vector angles �i obey the Poisson equation2��(~r) = @2�@~r2 (23)(� = charge density) of electrostatics with the clockwise topological charges (see Fig. (10))corresponding to positive electrical charges and with counter-clockwise topological charges cor-responding to negative electrical charges, or vice versa. This establishes a quantitative equiva-lence between planar electrostatic systems and orientation patterns [6, 8]; this is in quantitativeagreement with experimental �ndings.In particular, the resulting patterns depend on a formal orientation temperature, that isinduced by the neuronal orientations via the Hebb-rule, for a quantitative analysis thereofsee [8]. At zero 
uctuation rate T = 0 all orientations are parallel (see Fig. (12)); below acritical 
uctuation rate Tc neutral pairs of topological charges emerge (see Fig. (12)); while thetopological charges are located randomly above Tc. So far only randomly placed topologicalcharges have been observed, according to the present theory we predict a phase transition atsu�ciently low 
uctuation rate (see Fig. (12)).12
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Figure 13: The physical bases of the present neuronal adaptation theory. Left lower box:Neuronal dynamics. Middle lower box: Coupling dynamics. Right lower box: Additional mechanismsrelevant for emerging structures. Two boxes of intermediate length: neurosynaptic dynamics. Upperbox: Resulting emergent synaptic structures. Arrows: Indication of consequences.
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Discussion. The present derivation of the orientation patterns is in quantitative agreementwith experiment and may be regarded as a success of this neurosynaptic theory, based on thebiologically plausible locality assumption for synaptic change and on the biophysically estab-lished action potentials always in
uenced by thermodynamic membrane potential 
uctuations[8]. Other models of orientation patterns are not based on such simple and biologically plausiblemodel assumptions [24, 21] and do not provide such quantitative agreement with experiment,analytical treatment and proof of equivalence to planar electrostatic systems as a result. Aparticularly beautiful aspect of the present theory is that the Poisson equation may be derivedby purely topological considerations here, see f. i. [8], while in electrostatics the physical natureof electrical charges must be assumed.7 Outlook and discussionBased on a stochastic neuronal dynamics modeling spikes and on a Hebb-type coupling increaseafter coincident pre- and postsynaptic spiking extended by a slight in
uence of neighboringneurons (see Fig. (13)), we showed the ubiquitous emergence of topology preservation, theemergence of orientation preference and the emergence of orientation patterns with topologicalcharges equivalent to electrical charges. More generally, one may extend the local Hebb-typedynamics further by investigating the in
uence of small slightly time delayed signals [8], ofvaluation mechanisms, attention, attention focus and combining of sub-networks; as a resultone obtains emerging networks with increasing cognitive skills such as successful sensor-motorperformance, operant conditioning, generalization, transitive inference, learning of abstractobjects such as electrical charges, learning of counting without limitation as a possible solutionof Wittgenstein's paradox (see Fig. (14)). Altogether I developed and investigated the presentneurosynaptic theory with the mentioned extensions in my habilitation thesis [2] and in moredetail and depth in my new book [8]; the investigation of such neurosynaptic systems maybe regarded as a research program, actually performable analytically and numerically withmany proven non-trivial quantitative agreements with experimental observations [4, 2, 8], withbasic results in neurophysics, biology and cognitive sciences and with applications ranging frommedicine to intelligent systems technology. Acknowledgements. I am grateful for fruitfuldiscussions with Stefan Arndt, Hans Flohr, Olaf Scherf, Helmut Schwegler and Fred Wolf.14
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